欢迎登录材料期刊网

材料期刊网

高级检索

采用丝网印刷工艺制备了带有SDC阻挡层的固体氧化物电解池La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)基复合阳极, 利用动电位扫描及电化学阻抗谱分析考察了该材料在800℃时的电化学性能, 电化学阻抗谱的研究表明, O2-在电极发生氧化反应生成O2的反应速率由电极/阻挡层界面的电荷转移、阻挡层/电解质界面的电荷转移以及氧气的解离吸附或在电极表面的扩散等三个电极过程控制. 扫描电镜分析表明, 经过长时间的电化学测试及升降温, 阻挡层与电解质及复合电极部分均结合紧密, 无缺陷. 通过与传统的LSM-YSZ复合阳极的极化性能的对比, 显示出LSCF材料在SOEC阳极领域良好的应用前景.

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) based composite anode with SDC interlayer for solid oxide electrolysis cell was prepared by screen printing technique. Electrochemical performance of the electrode at 800℃ was examined by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) methods. The result of EIS analysis suggestes that the oxidation kinetics of O2- to O2 is controlled by three electrode procedures, including charge transfer at the electrode/interlayer interface, charge transfer at the interlayer/electrolyte interface and oxygen desorption/diffusion. Scanning electron microscope analysis shows that composite anode layer, SDC interlayer and the electrolyte are integrated and well-combined. In terms of anode polarization, LSCF based material exhibites a better application perspective rather than traditional LSM-YSZ composite material for SOEC anode.

参考文献

[1]
[2]
[3] Marban G, Valdes-Solis T. Towards the hydrogen economy- Int. J. Hydrogen Energy, 2007, 32(12): 1625-1637.

[2] Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario. Int. J. Hydrogen Energy, 2003, 28(3): 267-284.

[3] Jensen S H, Larsen P H, Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources. Int. J. Hydrogen Energy, 2007, 32(15): 3253-3257.

[4] Kong J, Zhang Y, Deng C, et al. Synthesis and electrochemical properties of LSM and LSF perovskites as anode materials for high temperature steam electrolysis. J. Power Sources, 2009, 186(2): 485-489.

[5] Suzuki T, Awano M, Jasinski P, et al. Composite (La, Sr)MnO3-YSZ cathode for SOFC. Solid State Ionics, 2006, 177(19-25): 2071-2074.

[6] Doshi R, Richards V L, Carter J D, et al. Development of solid-oxide fuel cells that operate at 500℃. J. Electrochem. Soc., 1999, 146(4): 1273-1278.

[7] Tai L W, Nasrallah M M, Anderson H U, et al. Structure and electrical properties of LaxSr1-xCoyFe1-yO3. Part 1. The system La0.8Sr0.2CoyFe1-yO3. Solid State Ionics, 1995, 76(3/4): 259-271.

[8] Tai L W, Nasrallah M M, Anderson H U, et al. Structure and electrical properties of LaxSr1-xCoyFe1-yO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics, 1995, 76(3/4): 273-283.

[9] Ralph J M, Schoeler A C, Krumpelt M. Materials for lower temperature solid oxide fuel cells. J. Mater. Sci., 2001, 36: 1161-1172.

[10] Qiu L, Ichikawa T, Hirano A, et al. Ln1-xSrxCo1-yFeyO3-&delta
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%