欢迎登录材料期刊网

材料期刊网

高级检索

为了探索CaCu3Ti4O12(CCTO)高介电性的起因机制, 利用固相反应工艺制备了CCTO陶瓷样品, 对其电学性质进行了研究. 在40 Hz~100 MHz测量范围内, 其室温下的介电频谱在1 MHz附近呈现一个类Debye型弛豫, 而高温介电频谱分别在1 kHz以下和1 MHz附近呈现两个类Debye型弛豫. 抛除表面层的同一个样品分别溅射金电极和烧渗银电极后升温测量其介电频谱, 发现低频介电弛豫对电极的金属类型高度敏感, 而高频介电弛豫与电极的金属类型无关, 与材料微观结构存在着密切的关系. 因此推断: CCTO低频介电弛豫起源于样品与电极之间的耗尽层效应, 而高频介电弛豫起源于高阻态的晶界与半导化的晶粒形成内部阻挡层电容效应. 

CaCu3Ti4O12 (CCTO) is one typical giant dielectric material with large ε' value in the order of 104, however, origin of giant dielectric permittivity in it is still controversial so far. In order to explore its possible origin, the dielectric properties and complex impedance of CCTO ceramics prepared via solid-state reaction method were investigated. Within the frequency range of 40 Hz-100 MHz, only one Debye-type relaxation around 1 MHz is observed at room temperature, while high-temperature dielectric dispersion shows two Debye-type relaxations below 1 kHz and around 1 MHz, respectively. The same sample surface-polished with Ag-paint electrodes and sputtered Au electrodes is measured at high temperature, respectively. It is revealed that the dielectric relaxation in the low frequency range changes significantly with the type of electrodes, while the dielectric relaxation in the high frequency range is independent of the type of electrodes, but exists closely relationship with the microstructure of samples. The two dielectric relaxations are thus suggested to originate from an electrode polarization effect and an internal barrier layer capacitance effect associated with insulating grain boundaries and semiconducting grains, respectively.

参考文献

[1] Subramanian M A, Li D, Duan N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem., 2000, 151(2): 323-325.

[2] Homes C C, Vogt T, Shapiro S M, et al. Optical response of high-dielectric-constant perovskite-related oxide. Science, 2001, 293(5530): 673-676.

[3] Sinclair D C, Adams T B, Morrison F D. CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett., 2002, 80(12): 2153-2155.

[4] Lunkenheimer P, Fichtl R, Ebbinghaus S G, et al. Nonintrinsic origin of the colossal dielectric constants in CCTO. Phys. Rev. B, 2004, 70(17): 172102-1-4.

[5] Ramirez A, Subramanian M, Gardel M, et al. Giant dielectric constant response in a copper-titanate. Solid State Comm., 2000, 115(5): 217-220.

[6] 周小莉, 杜丕一(ZHOU Xiao-Li, et al). CaCu3Ti4O12的制备及其对巨介电性能的影响. 无机材料学报(Journal of Inorganic Materials), 2005, 20(2): 484-488.

[7] 杨 雁, 李盛涛(YANG Yan, et al.). 共沉淀法制备CaCu3Ti4O12陶瓷. 无机材料学报(Journal of Inorganic Materials), 2010, 25(8): 835-839.

[8] Adams T B, Sinclair D C, West A R. Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater., 2002, 14(18): 1321-1323.

[9] Zhang L, Tang Z J. Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B, 2004, 70(17): 174306-1-6.

[10] Zhang J L, Zheng P, Wang C L, et al. Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures. Appl. Phys. Lett., 2005, 87(14): 142901-1-3.

[11] Ke S M, Huang H T, Fan H Q. Relaxor behavior in CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2006, 89(18): 182904-1-3.

[12] Ni L, Chen X M. Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2007, 91(12): 122905-1-3.

[13] Yu H T, Liu H X, Hao H, et al. Grain size dependence of relaxor behavior in CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2007, 91(22): 222911-1-3.

[14] Liu Y, Withers R L, Wei X Y. Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12. Phys. Rev. B, 2005, 72(13): 134104-1-4.

[15] Adams T B, Sinclair D C, West A R. Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B, 2006, 73(9): 094124-1-9.

[16] Cohen M H, Neaton J B, He L, et al. Extrinsic models for the dielectric response of CaCu3Ti4O12. J. Appl. Phys., 2003, 94(5): 3299-3306.

[17] Chung S Y, Kim I D, Kang S J L. Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater., 2004, 3(11): 774-778.

[18] Liu J J, Duan C G, Mei W N. Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys., 2005, 98(9): 093703-1-5.

[19] Ferrarelli M C, Sinclair D C, Derek C, et al. Comment on the origin(s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics. J. Mater. Chem., 2009, 19(33): 5916-5919.

[20] Li M, Shen Z J, Nygren M, et al. Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects. J. Appl. Phys., 2009, 106(10): 104106-1-8.

[21] Li W, Schwartz R W. Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B, 2007, 75(1): 012104-1-4.

[22] Fang T T, Shiau H K. Mechanism for developing the boundary barrier layer of CaCu3Ti4O12. J Am. Ceram. Soc., 2004, 87(11): 2072-2099.

[23] Shao S F, Zhang J L, Zheng P, et al. Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys., 2006, 99(8): 084106-1-11.

[24] Zhang L. Electrode and grain-boundary effects on the conductivity of CaCu3Ti4O12. Appl. Phys. Lett. 2005, 87(2): 022907-1-3.

[25] Krohns S, Lunkenheimer P, Ebbinghaus S G, et al. Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12. Appl. Phys. Lett., 2007, 91(2): 022910-1-3.

[26] Krohns S, Lunkenheimer P, Ebbinghaus S G, et al. Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy. J. Appl. Phys., 2008, 103(8): 084107-1-9.

[27] Wang C C, Zhang L W. Surface-layer effect in CaCu3Ti4O12. Appl. Phys. Lett., 2006, 88(4): 042906-1-3.

[28] Prakash B S, Varma K B R. Influence of sintering conditions and doping on the dielectric relaxation originating from the surface layer effects in CaCu3Ti4O12 ceramics. J. Phys. Chem. Solids, 2007, 68(4): 490-502.

[29] Bender B A, Pan M J. The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B, 2005, 117(3): 339-347.

[30] Sze S M. Physics of Semiconductor Devices, 2nd ed. New York: Wiley-Interscience, 1981: 251.

[31] Li M, Feteira A, Sinclair D C, et al. Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett., 2006, 88(23): 232903-1-3.

[32] Li J, Subramanian M A, Rosenfeld H D, et al. Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of SrCu3Ti4O12. Chem. Mater., 2004, 16(25): 5223-5225.

[33] Capsoni D, Bini M, Massarotti V, et al. Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12. J. Solid State Chem., 2004, 177(12): 4494-4500.

[34] Fang T T, Mei L T, Ho H F. Effects of Cu stoichiometry on the microstructure, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12. Acta. Mater., 2006, 54(10): 2867-2875.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%