欢迎登录材料期刊网

材料期刊网

高级检索

采用微弧等离子喷涂技术制备了CNTs-SiC/Al2O3-TiO2复合涂层, 借助SEM、X射线衍射、仪热分析仪和网络分析仪对CNTs-SiC/Al2O3-TiO2涂层的组织结构、高温氧化性能、电磁特性进行了测试分析. 结果表明: 多功能微弧等离子喷涂枪内中心轴向送粉方式制备的CNTs-SiC/Al2O3-TiO2复合涂层的组织结构致密、孔隙率低,  SiC和CNTs的物相也保留下来. CNTs-SiC/Al2O3-TiO2涂层的高温氧化性能有所提高, 涂层在35~700℃升温阶段失重率为0.71wt%, 700℃恒温氧化60min后失重率为0.41wt%. 随着频率的增加, CNTs-SiC/Al2O3-TiO2复合粉末的介电常数的实部从17.3下降到10.3, 而虚部在6.3~2.9之间, 具有频散效应. 制备的CNTs-SiC/Al2O3-TiO2复合涂层在一定的范围内随着涂层厚度的增加, 吸波能力显著提高, 其谐振频率不断向低频移动.

CNTs-SiC/Al2O3-TiO2 coatings were prepared by micro-plasma spraying. Microstructure, high temperature oxidation resistance, complex permittivity and absorbing performance of CNTs-SiC/Al2O3-TiO2 coatings were studied. The coatings were density, low porosity. Little oxidation occurred during the spraying process. The phase of β-SiC and C were successfully retained during the plasma spraying process. The high temperature oxidation of CNTs-SiC/Al2O3-TiO2 composite coating is improved compared with that of CNTs. The initial weight loss temperature of CNTs-SiC/Al2O3-TiO2 composite coating is raised to 511℃. The weight loss of the sample heated from 35℃ to 700℃ is 0.71 wt%, while the weight loss of the sample held for 60 min at 700℃ is 0.41wt%. The real parts of complex permittivity of the CNTs-SiC/Al2O3-TiO2 composites decrease from 17.3 to 10.3 with the increasing frequency. And with increasing frequency, the real parts of complex permittivity of the composites decrease from 6.3 to 2.9. This tendency is beneficial for the absorption of the microwave with wide frequency band. The CNTs-SiC/Al2O3-TiO2 coatings have ability of absorbing microwave. The microwave absorbing performance of the coating with thickness of 0.9 mm is pure. However, with the increase of the coating thickness, the microwave absorption properties were enhanced and the minimum reflection loss shifts to low frequency with the increase of the coating thickness.

参考文献

[1] Larry L, Sajjad H, Dario P, et al. Size and mobility of excitons in (6,5) carbon nanotubes. Nature Physics, 2009, 5(1): 54-58.

[2] Leroy B J, Lemay S G, Kong J, et al. Electrical generation and absorption of phonons in carbon nanotubes. Nature, 2004, 432(7015): 371-374.

[3] Alexander A G, Mark C H. Processing and properties of highly enriched double-wall carbon nanotubes. Nature Nanotechnology, 2009, 4(1): 64-70.

[4] 陈西良, 马明旺, 杨小敏, 等(CHEN Xi-Liang, et al). MWNTs/HDPE复合体系在太赫兹波段的光电性质. 物理化学学报(Acta Phys. Chim. Sin.), 2008, 24(11): 1969-1974.

[5] Zhang L, Zhu H. Dielectric, magnetic, and microwave absorbing properties of multi-walled carbon nanotubes filled with Sm2O3 nanoparticles. Mater. Lett., 2009, 63(2): 272-274.

[6] Micheli D, Apollo C, Pastore R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos. Sci. Technol., 2010, 70(2): 400-409.

[7] Yonglai Y, Mool C G, Kenneth L D. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett., 2005, 5(11): 2131-2134.

[8] Song W L, Cao M S, Hou Z L, et al. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scripta Mater., 2009, 61(2): 201-204.

[9] Dong Z J, Li X K, Yuan G M, et al. Fabrication of protective tantalum carbide coatings on carbon fibers using a molten salt method. Appl. Surf. Sci., 2008, 254(18): 5936-5940.

[10] Zhao D L, Luo F, Zhou W C. Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen. J. Alloys Compd., 2010, 490(1/2): 190-194.

[11] Huang J F, Zeng X R, Li H J, et al. Influence of the preparation temperature on the phase, microstructure and anti-oxidation property of a SiC coating for C/C composites. Carbon, 2004, 42(8/9): 1517-1521.

[12] Villegas M, Sierra T, Lucas F, et al. Oxidation treatments for SiC particles and its compatibility with glass. J. Eur. Ceram. Soc., 2007, 27(2/3): 861-865.

[13] 华绍春, 王汉功, 汪刘应, 等(HUA Shao-Chun, et al). 微弧等离子喷涂AT13纳米涂层的工艺优化. 无机材料学报(Journal of Inorganic Materials), 2007, 22(3): 560-564.

[14] Wang L Y, Wang H G, Hua S C, et al. Research on multi-function micro-plasma spraying technology. Plasma Sci. Technol., 2007, 9(1): 52-56.

[15] Rata V, Coudert J F. Pressure and arc voltage coupling in dc plasma torches: identification and extraction of oscillation modes. J. Appl. Phys., 2010, 108: 043304-1-8.

[16] Hou X M, Zhang G H, Chou K C. Influence of particle size distribution on oxidation behavior of SiC powder. J. Alloys Compd., 2009, 477(1/2): 166-170.

[17] Lin Y J, Chen L J. Oxidation of SiC powders in SiC/alumina/ zirconia compacts. Ceram. Int., 2000, 26(6): 593-598.

[18] Sakka Y, Bidinger D D, Aksay I A. Processing of silicon carbide-mullite-alumina nanocomposites. J. Am. Ceram. Soc., 1995, 78(2): 479-486.

[19] 卿玉长, 周万城, 罗 发, 等(QING Yu-Chang, et al). 多壁碳纳米管/环氧有机硅树脂涂层的介电和吸波性能研究. 无机材料学报(Journal of Inorganic Materials), 2010, 25(2): 181-185.

[20] Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microwave Theory Techniques, 1971, 19(1): 65-72.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%