欢迎登录材料期刊网

材料期刊网

高级检索

燃料电池对其理想燃料氢气的纯度要求极高, 如何低成本、大规模制取高纯氢气已成为燃料电池技术实现工业化的一个关键问题和研究热点. 近年发展起来的兼具催化与分离双重功能的膜催化反应技术是实现制取高纯氢气的一个有效途径. 本文结合膜催化反应领域的最新进展, 综述了膜催化反应器的优点、组成、类型; 介绍了无机膜材料的优点、分类及制备技术; 详细综述了透氧膜催化反应器、透氢膜催化反应器及双膜催化反应器在制氢过程中的研究进展和应用, 指出了膜催化反应制氢技术在工业化发展过程中存在的问题及应用前景.

As a kind of ideal fuel for fuel cell, hydrogen must be satisfied with the enough high purity. To produce high purity hydrogen at a low cost and large scale method has become a key research focus in the industrialization of fuel-cell technology. The membrane catalytic technology with catalysis and separation dual functions has been developed in recent years, which is a good method to produce high purity hydrogen. Based on the latest developments in the membrane catalytic reaction fields, the advantages, composition and type of membrane catalytic reactor are summarized. The preparation techniques, advantages and classification of inorganic membrane materials are described. Especially, the progress and application for high purity hydrogen production are reviewed in three kinds of catalytic membrane reactors, including oxygen-permeable membrane reactor, hydrogen-permeation membrane reactor and double-membranes reactor. The existing problems of catalytic membrane and membrane catalytic reactor in the industrialization process of hydrogen production using the membrane catalytic technology are also discussed. Additionally, the prospects of membrane catalytic reactors for hydrogen production is proposed.

参考文献

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12] Cheng Y S, Pea MA, Fierro J L, et al. Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture. J. Membr. Sci. 2002, 204(1/2): 329-340.

[2] Klaiber T. Fuel cells for transport: can the promise be fulfilled- Technical requirements and demands from customers. J. Power Sources, 1996, 61(1/2): 61-69.

[3] Suurs RAA, Hekkert MP, Smits REHM. Understanding the build-up of a technological innovation system around hydrogen and fuel cell technologies. Int. J. Hydrogen Energy, 2009, 34(24): 9639-9654.

[4] 邢丹敏, 侯中军, 燕希强, 等. 国产质子交换膜燃料电池关键材料及部件的电池组性能. 机械工程学报, 2010, 46(6): 16-20.

[5] 陈喜蓉, 董新法, 邹汉波, 等. 车载燃料电池富氢气体中CO选择性氧化去除催化剂研究进展. 天然气化工, 2007, 32(4): 59-64.

[6] 皱汉波, 董新法. 林维明. 富氢气体中CO选择性氧化研究进展.化学世界, 2005(6): 367-370.

[7] Wood B J, Wise H. Dehydrogenation of cyclohexane on a hydrogen- porous membrane. J. Catal., 1968, 11(1): 30-34.

[8] Gryaznov V M, Smirnov V S. The reactions of hydrogenations on membrane catalysts. Russ. Chem.Rev. , 1974, 43(10): 821-834.

[9] Chen Y, Wang Y, Xu H, et al. Hydrogen production of membrane reformer for methane steam reforming near practical working conditions. J. Memb. Sci., 2008, 32(2): 453-459.

[10] 王建宇, 徐又一, 朱宝库. 高分子催化膜及膜反应器研究进展.膜科学与技术, 2007, 27(6): 82-88.

[11] 薛俊斌. TS-1沸石催化膜的制备与氧化反应性能研究. 大连: 大连理工大学硕士论文, 2007.

[12] 黄仲涛, 曾昭槐, 钟邦克. 无机膜技术及其应用. 北京: 中国石化出版社, 1999.

[13] 程云飞, 赵海雷, 王治峰, 等(CHENG Yun-Fei, et al). 钙钛矿型透氧膜材料的结构特点与研究进展. 稀有金属材料与工程(Rare Metal Mat. Eng.), 2008, 37(12): 2069-2074.

[14] Keizer K, Bruggraaf A J. Porous ceramic materials membranes in membrane applications. Sci. Ceram., 1988, 14: 83-93.

[15] Bonecamp B C.Preparation of asymmetric ceramic membrane supports by dip-casting. Membr. Sci. Technol., 1996, 4: 141-225.

[16] Iglesia O de la, Pedemera M, Mallada R, et al. Synthesis and characterization of MCM-48 tubular membranes. J. Memb. Sci., 2006, 280(1/2): 867-875. 
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%