欢迎登录材料期刊网

材料期刊网

高级检索

采用水热法,无需添加剂,通过调控反应液pH值和反应温度制备了不同结构和形貌的BiVO4可见光催化剂.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见漫反射(DRS)和低温氮吸附等手段对样品进行表征,结果显示:水热温度与反应液pH值对晶体结构有很大影响,180℃水热温度和酸性条件有利于单斜相的生成.反应液pH值对形貌也有很大影响,不同条件下得到了片状、立方状、棒状等不同形貌的BiVO4.同时以亚甲基蓝为降解对象,考察了所制备BiVO4的可见光催化活性.其中,pH值为2,反应液中制备的片状单斜相BiVO4具有最高的光催化活性(4 h达92.0%).此外,还考察了光催化剂用量、亚甲基蓝浓度和电子受体的存在对光催化过程的影响,结果表明:当催化剂用量为1.0 g/L,亚甲基蓝浓度为1o mg/L,KBrO3为电子受体时光催化效果最佳.

参考文献

[1] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode.Nature,1972,238(5358):37-38.
[2] Yu J,Yu H,Cheng B,et al.The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition.J.Phys.Chem.B,2003,107(50):13871-13879.
[3] BAI Yuan,SUN Hong-Qi,JIN Wan-Qin.Effects of pH values on the physicochemical properties and photocatalytic activities of nitrogen-doped TiO2.Journal of Inorganic Materials,2008,23(2):387-392.
[4] 柳丽芬,董晓艳,杨风林,等(LIU Li-Feng.Ag/TiO2光催化还原硝酸氮.无机化学学报(ChineseJ.Inorg Chem),2008,24(2):211-217.
[5] Takanabe K,Kamata K,Wang X,et al.Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine.Phys.Chem.Chem.Phys.,2010,12(40):13020--13025.
[6] Khan R,Kim T.Preparation and application of visiblelight-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts.J.Hazard.Mater.,2009,163(2/3):1179-1184.
[7] Chang W K,Rao K K,Kuo H C,et al.A novel core-shell like composite In2O3@CaIn2O4 for efficient degradation of Methylene Blue by visible light.Appl.Catal.A Gen.,2007,321(1):1-6.
[8] Zhang C,Zhu Y.Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts.Chert Mater.,2005,17(13):3537-3545.
[9] Ouyang S,Zhang H,Li D,et al.Electronic structure and photocatalytic characterization of a novel photocatalyst AgAlO2.J.Phys.Chem.B,2006,110(24):11677-11682.
[10] Zhang L,Xu T,Zhao X,et al.Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities.Appl.Catal.B,2010,98(3/4):138-146.
[11] Zou Z,Ye J,Sayama K,et al.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.Nature,2001,414 (6864):625-627.
[12] GE Lei,ZHANG Xian-Hua.Synthesis of novel visible light driven BiVO4 Photocatalysts via microemulsion process and its photocatalytic performance.Journal of Inorganic Materials,2009,24(3):453-456.
[13] Sleight A W,Chen H Y,Ferretti A,et al.Crystal growth and structure of bismuth vanadate (BiVO4).Mater.Res.Bull.,1979,14(12):1571-1581.
[14] Long M,Cai W,Kisch H.Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4.J.Phys.Chem.C,2008,112(2):548-554.
[15] Neves M C,Lehocky M,Soares R,et al.Chemical bath deposition of cerium doped BiVO4.Dyes Pigments,2003,59(2):181-184.
[16] Zhang X,Quan X,Chen S,et al.Effect of Si doping on photoelectrocatalytic decomposition of phenol of BiVO4 film under visible light.J.Hazard.Mater.,2010,177(1/2/3):914-917.
[17] Zhang L,Chen D,Jiao X.Monoclinic structured BiVO4 nanosheets:hydrothermal preparation,formation mechanism,and coloristic and photocatalytic properties.J.Phys.Chem.B,2006,110(6):2668-2673.
[18] Sun S,Wang W,Zhou L,et al.Efficient methylene blue removal over hydrothermally synthesized starlike BiVO4.Ind.Eng.Chem.Res.,2009,48(4):1735-1739.
[19] Yin W,Wang W,Zhou L,et al.CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation.J.Hazard.Mater.,2010,173(1/2/3):194-199.
[20] Zheng Y,Wu J,Duan F,et al.Gemini surfactant directed preparation and photocatalysis of m-BiVO4 hierarchical frameworks.Chem.Lett.,2007,36(4):520-521.
[21] Zhou L, Wang W, Xu H. Controllable synthesis of three-dimensional weli-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy.Cryst.Growth Des.,2008,8(2):728-733.
[22] Guo Y,Yang X,Ma F,et al.Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation.Appl.Surf.Sci.,2010,256(7):2215-2222.
[23] Zhang A,Zhang J.Hydrothermal processing for obtaining of BiVO4 nanoparticles.Mater.Lett.,2009,63(22):1939-1942.
[24] Yu J,Kudo A.Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4.Adv.Funct.Mater.,2006,16(16):2163-2169.
[25] Tokunaga S,Kato H,Kudo A.Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalyric properties.Chem.Mater.,2001,13(12):4624-4628.
[26] Bierlein J,Sleight A.Ferroelasticity in bismuth vanadate (BiVO4).Solid State Commun.,1975,16(1):69-70.
[27] Fan W,Song X,Bu Y,et al.Selected-control hydrothermal synthesis and formation mechanism of monazite-and zircon-type LaVO4 nanocrystals.J.Phys.Chem.B,2006,110(46):23247-23254.
[28] Bhattacharya A K,Mallick K K,Hartridge A.Phase transition in BiVO4.Mater.Lett.,1997,30(1):7-13.
[29] Zhou L,Wang W,Liu S,et al.A sonochemical route to visiblelight-driven high-activity BiVO4 photocatalyst.J.Mol.Catal.A,2006,252(1/2):120-124.
[30] Oshikiri M,Boero M,Ye J,et al.Electronic structures of promising photocatalysts InMO4 (M=V,Nb,Ta) and BiVO4 for water decomposition in the visible wavelength region.J.Chem.Phys.,2002,117(15):7313-7318.
[31] Zhang T, Oyama T, Aoshima A, et al. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation.J.Photoch.Photobio.A,2001,140(2):163-172.
[32] Zhang A,Zhang J,Cui N,et al.Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst.J.Mol.Catal.A:Chem.,2009,304(1/2):28-32.
[33] 姜承志,苏会东,卢旭东.混晶纳米TiO2薄膜光催化降解亚甲基蓝.环境科学与技术,2008,31(8):26-30.
[34] Wu C.Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems.Chemosphere,2004,57(7):601-608.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%