欢迎登录材料期刊网

材料期刊网

高级检索

采用陶瓷靶直流磁控溅射, 以玻璃为基底制备2.5wt% Nb掺杂TiO2薄膜, 控制薄膜厚度在300~350 nm, 研究了不同基底温度下所制得薄膜的结构、形貌和光学特性. XRD分析表明, 基底温度为150℃、250℃和350℃时, 薄膜分别为非晶态、锐钛矿(101)和金红石相(110)结构. 基底温度250℃时, 锐钛矿相薄膜的晶粒尺寸最大, 约为   32 nm. 薄膜表面形貌的SEM分析显示, 薄膜粗糙度和致密度随基底温度升高得到改善. 薄膜的平均可见光透过率在基底温度为250℃以内约为70%, 随基底温度升高至350℃, 平均透过率下降为59%, 金红石相的存在不利于可见光透过. Nb掺杂TiO2薄膜的光学带宽在3.68~3.78 eV之间变化. 基底温度为250℃时, 锐钛矿相薄膜的禁带宽度最大, 为3.78 eV.

Nb-doped (2.5wt%) TiO2 thin films was deposited on glass substrate by DC magnetron sputtering from a ceramic target and the films thickness was controlled in the range from 300 nm to 350 nm. The structure, surface morphology and optical properties of the films deposited at different substrate temperatures were investigated by X-ray diffraction, scanning electron microscope, and optical transmission spectroscope. The films deposited at 150℃, 250℃ and 350℃ were amorphous, anatase and rutile, respectively. The grain size of the typical anatase film deposited at  250℃ reached the maximum of 32 nm. The roughness of the films decreased and their density increased with the rising of substrate temperature. The average optical transmittance of films were around 70% when the substrate temperatures were below 250℃. As the substrate temperature were risen to 350℃, the films’ transmittance dropped to 59%. It indicated that the transmittance of visible light was hindered by the rutile phase in the Nd-doped TiO2 films. The optical band gap of the films were in the range from 3.68 eV to 3.78 eV, and the optical band gap of the typical anatase film deposited at 250℃ reached the highest value of 3.78 eV.

参考文献

[1]
[2] Lee K M, Hu C W, Chen H W, et al. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Materials and Solar Cells, 2008, 92(12): 1628-1633.

[2] Chen S, Zhao W, Liu W, et al. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2. Applied Surface Science, 2008, 255(5): 2478-2484.

[3] Moon J, Park J A, Lee S J, et al. Pd-doped TiO2 nanofiber networks for gas sensor applications. Sensors and Actuators B, 2010, 149(1): 301-305.

[4] Yamada N, Hitosugi T, Kasai J, et al. Transparent conducting Nb-doped anatase TiO2 (TNO) thin films sputtered from various oxide targets. Thin Solid Films, 2010, 518(11): 3101-3104.

[5] Halary E, Haro P E, Benvenuti G, et al. Crystallinity of titania thin films deposited by light induced chemical vapor deposition. Applied Surface Science, 2000, 168(1-4): 61-65.

[6] Kim N J, La Y H, Im S H, et al. Optical and structural properties of Fe-TiO2 thin films prepared by Sol-Gel dip coating. Thin Solid Films, 2010, 518(24): e156-e160.

[7] Nomura K, Eba H, Sakurai K, et al. XAFS and CEMS study of dilute magneto-optical semiconductor, Fe-doped TiO2 films. Thin Solid Films, 2007, 515(24): 8649-8652.

[8] Wang S F, Hsu Y F, Lee Y S. Microstructural evolution and optical properties of doped TiO2 films prepared by RF magnetron sputtering. Ceramics International, 2006, 32(2): 121-125.

[9] Heo C H, Lee S B, Boo J H. Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics. Thin Solid Films, 2005, 475(1/2): 83-188.

[10] Fasaki I, Hotovy I, Rehakova A, et al. Effects of post-deposition surface treatment on the optical, structural and hydrogen sensing properties of TiO2 thin films. Thin Solid Films, 2009, 518(4): 1103-1108.

[11] Ting C C, Chena S Y, Liu D M. Preferential growth of thin rutile TiO2 films upon thermal oxidation of sputtered TiO2 films. Thin Solid Films, 2002, 402(1/2): 290-295.

[12] Dreesen L, Colomer J F, Limage H, et al. Synthesis of titanium dioxide nanoparticles by reactive DC magnetron sputtering. Thin Solid Films, 2009, 518(1): 112-115.

[13] Poelman H, Poelman D, Depla D, et al. Electronic and optical characterisation of TiO2 films deposited from ceramic targets. Surface Science, 2001, 482-485(2): 940-945.

[14] Eufinger K, Tomaszewski H, Depla D, et al. The d.c. magnetron sputtering behavior of TiO2-x targets with added Fe2O3 or Nd2O3. Thin Solid Films, 2006, 515(2): 683-686.

[15] Mardare D, Tasca M, Delibas M, et al. On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films. Applied Surface Science, 2000, 156(1-4): 200-206.

[16] Sheppard L, Bak T, Nowotny J, et al. Effect of niobium on the structure of titanium dioxide thin films. Thin Solid Films, 2006, 510(1-2): 119-124.

[17] Babich T G, Zagorodnyuk A V, Teterin G A, et al. Isothermal sections in the systems ZnO-AO2-Nb2O5 (A=Ti, Zr, Sn) at 1473 K. Journal of Alloys and Compounds. 1994, 210(1/2): 75-81.

[18] 野口幸雄, 铃木秀史. 氧化钛烧结体的制作及其用于溅射靶材, (日本专利)公开特许公报: 特开2001057871, 2001.

[19] Gillispie M A. Metal Oxide-based Transparent Conducting Oxides. Iowa: Iowa State University, 2006.

[20] Ma Q B, Ye Z Z, He H P, et al. Substrate temperature dependence of the properties of Ga-doped ZnO films deposited by DC reactive magnetron sputtering. Vacuum, 2008, 82(1): 9-14.

[21] Macleod H A. Structure-related optical properties of thin films. Journal of Vacuum Society Technology A, 1986, 4(3): 418-422.

[22] Qui-onez C, Vallejoa W, Gordillo G. Structural, optical and electrochemical properties of TiO2 thin films grown by APCVD method. Applied Surface Science, 2010, 256(13): 4065-4071.

[23] Vishwas M, Sharma S K, Rao K N, et al. Influence of surfactant and annealing temperature on optical properties of Sol-Gel derived nano-crystalline TiO2 thin films. Spectrochimica Acta Part A, 2010, 75(3): 1073-1077.

[24] Morillas R M, Marcos J S, André
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%