欢迎登录材料期刊网

材料期刊网

高级检索

研究了微氧化处理对球形石墨的晶体结构、表面形貌和电化学行为的影响. 采用XRD、Raman光谱和SEM等手段分析了样品的结构和形貌, 并采用恒电流充放电测试、粉末微电极技术和慢速扫描循环伏安法(SSCV)研究了微氧化前后石墨负极的电化学行为. 结果表明, 微氧化后石墨颗粒中的结构缺陷增多, 近表面区域的无序度增大, 面内平均晶粒尺寸La减小, 且菱形相含量降低, 石墨呈不规则的鳞片状, 部分层面的边缘有卷曲与刻蚀现象. 微氧化后石墨负极的第三次脱锂容量从345.5 mAh/g增加至381.4 mAh/g, 且其循环性能得到有效改善. 同时, 微氧化后锂离子较容易从石墨中脱出, 脱锂过程中一阶Li-GICs(lithium-graphite intercalation compounds, 简称Li-GICs)向二阶Li-GICs的阶转变可在较低的电位下发生.

The effects of mild oxidation treatment on the crystal structure, morphology and electrochemical behavior of spherical graphite were investigated. The structure and morphology of the samples were characterized by XRD, Raman spectra and SEM analysis, respectively. The electrochemical behavior of the samples was studied using galvanostatic charge/discharge test, powder cavity microelectrode technique and slow scan rate cyclic voltammograms. The results indicate that structural defects in graphite particles and disordered degree of near surface region of graphite increase after modification, while the average in-plane crystallite domain size La and content of rhombohedral phase decrease. The graphite particles present irregular flake shape and some graphene sheets show flexual and sculptural margin. Electrochemical measures show that reversible capacity of modified graphite increases from 345.5 mAh/g to 381.4 mAh/g, and cycling performance is improved. During deintercalation process of the modified graphite, stage transformation from stage 1 Li-GICs (lithium-graphite intercalation compounds) to stage 2 Li-GICs begins to happen at lower voltage, compared with that of the raw graphite.

参考文献

[1] Peled E, Menachem C, Bar-Tow D, et al. Improved graphite anode for lithium-ion batterie: chemically bonded solid electrolyte interface and nanochannel Formation. J. Electrochem. Soc., 1996, 143 (1): L4-L6.

[2] Buqa H, Golob P, Winter M, et al. Modified carbons for improved anodes in lithium ion cells. J. Power Sources, 2001, 97-98: 122-125.

[3] Cao Xiaoyan, Kim Jihyun, Oh Seungmo. The effect of mild oxidation on the electrochemical behaviour of graphitized MCMB. Carbon, 2002, 40(12): 2263-2284.

[4] 尹鸽平, 杜春雨, 路 蜜, 等. 表面氧化石墨的嵌锂性能研究. 炭素, 2003, (2): 20-23.

[5] Ein-Eli Yair, Victor R Koch. Chemical oxidation: a route to enhanced capacity in Li-lon graphite anodes. J. Electrochem. Soc., 1997, 144(9): 2968-2973.

[6] Fu L J, Liu H, Wu Y P, et al. Surface modifications of electrode materials for lithium ion batteries. Solid Sate Sciences, 2006, 8(2): 113-128.

[7] 时志强, 王成扬, 樊丽萍, 等. 含菱形相的天然石墨用作锂离子电池负极材料. 天津大学学报, 2005, 38(2): 154-158.

[8] Kohs W, Santner H J, Besenhard J O, et al. A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase. J. Power Sources, 2003, 119-121: 528-537.

[9] Markervich E, Levi M D, Aurbach D, et al. Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM. J. Power Sources, 2005, 146(1/2): 146-150.

[10] Wang Guoping, Zhang Bolan, Yue Min, et al. A modified graphite anode with high initial efficiency and excellent cycle life expectation. Solid State Ionics, 2005, 176(9/10): 905-909.

[11] 吴 峰. 绿色二次电池及其新体系研究进展. 北京: 科学出版社, 2007: 106.

[12] 刘洪波, 傅 玲, 邹艳红. Hummers法制备氧化石墨时影响氧化程度的工艺因素研究. 炭素, 2005(4): 10-14.

[13] Wu Y P, Jiang C, Wan C, et al. Effects of pretreatment of natural graphite by oxidative solutions on its electrochemical performance as anode material. Electrochim. Acta, 2003, 48(7): 867-874.

[14] 查全性. 化学电源选论. 武汉: 武汉大学出版社, 2005: 192-193.

[15] 徐仲榆, 杨小飞, 王其坤. 采用粉末微电极循环伏安法估测锂离子电池炭负极材料的循环性能. 湖南大学学报(自然科学版), 2004, 3(31): 10-13,28.

[16] Zou Lin, Kang Feiyu, Zheng Yong-Ping, et al. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries. Electrochim. Acta, 2009, 54(15): 3930-3934.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%