欢迎登录材料期刊网

材料期刊网

高级检索

通过调整制备过程中的搅拌速度合成了具有不同二次孔结构的双模型介孔SiO2纳米材料(BMMs),进而通过3-(2-氨基乙基氨基)丙基三甲氧基硅烷对其表面修饰,以布洛芬为模型药物,重点考察了组装与缓释性能,并根据Korsmeyer - Peppas方程分析其释放动力学行为.采用XRD、TEM、N2吸脱附曲线以及元素分析等多种表征手段,结果表明通过改变搅拌速度可以改变正硅酸乙酯的水解和缩聚速度,从而直接影响BMMs一级孔结构的有序度和由颗粒堆积而成的二级孔大小.选用布洛芬作为药物模型,BMMs一级孔结构主要影响其药物的组装性能,二级孔结构则主要影响药物分子的缓释行为,二级孔越大,释放速率越快.

参考文献

[1] Vallet-Regi M,Ramila A,Del Real R P,et al.A new property of MCM-41:drug delivery system.Chem.Mater.,2001,13(2):308-311.
[2] Cavallaro G,Pierro P,Palumbo F S,et al.Drug delivery devices based on mesoporous silicate.Drug Deliv.,2004,11(1):41-46.
[3] Izquierdo-Barba I,Martinez A,Doadrio A L,et al.Release evaluation of drugs from ordered three-dimensional silica structures.Eur.J.Pharm.Sci.,2006,26(5):365-373.
[4] Ford D M,Simanek E E,Shantz D F.Engineering nanospaces:ordered mesoporous silicas as model substrates for building complex hybrid materials.Nanotechnology,2005,16(7):S458-S475.
[5] Zhang H D,Sun Y H,Ye K Q,et al.Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(Ⅱ)-porphyrin complexes.J.Mater Chem.,2005,15(31):3181-3186.
[6] Brieler F J,Grundmann P,Fr(o)ba M,et al.Comparison of the magnetic and optical properties of wide-gap (Ⅱ,Mn)Ⅵ nanostructures confined in mesoporous silica.Eur.J.Inorg.Chem.,2005,36(47):3597-3611.
[7] Jia M J,Seifert A,Berger M,et al.Hybrid mesoporous materials with a uniform ligand distribution:synthesis,characterization,and application in epoxidation catalysis.Chem.Mater.,2004,16(5):877-882.
[8] Slowing I I,Trewyn B G,Girt S,et al.Mesoporous silica nanoparticles for drug delivery and biosensing applications.Adv.Funct.Mater,2007,17(8):1225-1236.
[9] Balas F,Manzano M,Horcajada P,et al.Confinement and controlled release of bisphosphonates on ordered mesoporous silicabased materials.J.Am.Chem.Soc.,2006,128(25):8116-8117.
[10] Huang X L,Li L L,Liu T L,et al.The shape effect of mesoporous silica nanoparticles on biodistribution,clearance,and biocompatibility in vivo.ACS Nano,2011,5(7):5390-5399.
[11] Doadrio A L,Sousa E M B,Doadrio J C,et al.Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery.J.ControlRelease,2004,97(1):125-132.
[12] Qu F Y,Zhu G S,Huang S Y,et al.An effective control release of captopril drug by silylation of mesoporous MCM-41.Chemphyschem.,2006,7(2):400-406.
[13] Munoz B,Ramila A,Perez-Pariente J,et al.MCM-41 Organic modification as drug delivery rate regulator.Chem.Mater.,2003,15(2):500-503.
[14] Qu F Y,Zhu G S,Lin H M,et al.A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials.Journal of Solid State Chemistry,2006,179(7):2027-2035.
[15] Sun J H,Shan Z P,Maschmeyer T,et al.Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes.Langmuir,2003,19(20):8395-8402.
[16] Gao L,Sun J H,Li Y Z,et al.Bimodal mesoporous silicas functionalized with different level and species of the amino groups for adsorption and controlled release of aspirin. Journal of Nanoscience and Nanotechnology,2011,11(8):6690-6697.
[17] Manzano M,Aina V,Arean C F,et al.Studies on MCM-41 mesoporous silica for drug delivery:effect of particle morphology and amine functionalization.Chemical Engineering Journal,2008,137(1):30-37.
[18] Trewyn B G,Whitman C M,Lin V S Y.Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents.Nano Lett.,2004,4(11):2139-2143.
[19] Zhu Y F,Shi J L,Shen W H,et al.Novel stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayers core-shell structure.Angew.Chem.Int.Ed.,2005,44(32):5083-5087.
[20] Zhu Y F,Shi J L,Li Y S,et al.Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics.J.Mater Res.,2005.20(1):54-61.
[21] Xu W J,Gao Q,Xu Y,et al.Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres.Powder Technology,2009,191(1/2):13-20.
[22] Kokubo T,Kushitani H,Sakka S,et al.Solution able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W3.J.Biomed.Mater.Res.,1990,24(6):721-734.
[23] Chen C Y,Li H X,Davis M E.Studies on mesoporous materials.(Ⅰ) Synyhesis and characterization of MCM-41.Microporous Mater.,1993,2(1):17-26.
[24] Huo Q S,Leon R,Petroff P M,et al.Mesostructre design with gemini surfactants:supercage formation in a three dimensional hexagonal array.Science,1995,268(5212):1324-1327.
[25] Ying J Y,Benziger J B,Navrotsky A.The structural evolution of alkoxide silica gels to glass:efect of catalyst pH.J.Am.Ceram.Soc.,1993,76(10):2571-2582.
[26] 顾宇辉,古宏晨,徐宏,等(GU Yu-Hui,et al).正硅酸乙酯水解过程的半经验量子化学研究.无机化学学报(Chinese J.Inorg.Chem),2003,19(12):1301-1306.
[27] Gregg S J,Sing K S W.Adsorption,Surface Area and Porosity.Academic Press:London.1982.
[28] Costa P J,Lobo M S.Modeling and comparison of dissolution profiles.Eur.J.Pharm.Sci.,2001,13(2):123-133.
[29] Heikkila T,Salonen J,Tuura J,et al.Mesoporous silica material TUD-I as a drug delivery system.Int.J.Pharm.,2007,331(1):133-138.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%