欢迎登录材料期刊网

材料期刊网

高级检索

对几种玻璃(K9-HL玻璃、JGS3石英玻璃、K509玻璃以及JGS1石英玻璃)在电离辐照(质子、电子)作用下的光学稳定性进行了系统研究, 并以此为基础, 通过空间电离辐照在玻璃作用的模拟计算, 对这几种玻璃在轨(近地点350 km, 远地点425 km, 轨道倾角51.6o)光学寿命进行了预测. 在该轨道使用10年时, K9-HL玻璃可见光透过率可能出现明显下降, 而JGS3石英玻璃、K509玻璃以及JGS1石英玻璃的可见光透过率保持不变或变化很小. 由于绝大多数空间粒子穿透能力小, 空间电离辐照仅能造成玻璃表层的着色. 因此, 长期在轨航天器舷窗可加一防电离辐照层以减少内层玻璃接受的电离辐照量, 而该层玻璃可采用石英玻璃.

The optical stabilities of several glasses (K9-HL glass, JGS3 silica glass, K509 glass and JGS1 silica glass) under conditions of ionizing radiation (proton flux, electron flux) were studied. Additionally, using the simulation results of space ionizing radiation by SPENVIS and CR?ME-MC, optical lives of these four glasses serving in a given orbital (perigee 350 km, apogee 425 km, orbital inclination 51.6o) were analysed. It can be found that being used for more than 10 years in this given orbital, the optical transmission of the K9-HL glass evidently decreased, while the optical transmission of the other three glasses (JGS3 silica glass, K509 glass and JGS1 silica glass) didn’t change or changed a little and they can serve as good optical materials in the given space orbital. Because most of the space particles (ionizing radiation) can be effectively inhibited or absorbed in some penetration depth of the glass, the space ionizing radiation can only color a surface layer of the glass, as a result, an anti-radiation glass layer can be put outside the window of a long duration spacecraft in order to reduce ionizing irradiation, and the layer can be made of silica glass.

参考文献

[1] 宋力昕, 胡行方, 吴国庭. 热钢化对载人航天器舷窗玻璃强度的影响. 中国空间科学技术, 1996, (4): 43-49.

[2] 吴国庭. 神舟飞船结构的研制. 航天器工程, 2004, 13(3): 14-19.

[3] Schreurs J W H. Study of some trapped hole centers in X-irradiated alkali silicate glasses. J. Phys. Chem., 1967, 47(2): 818-830.

[4] Bishay A. Radiation induced color centers in multicomponent glasses. J. Non-Cryst. Solids, 1970, 3: 54-114.

[5] 葛世名. 石英玻璃的耐辐照性能. 原子能科学技术, 1983, (2): 170-173.

[6] Kreidl N J, Hensler J R. Formation of color centers in glasses exposed to gamma radiation. J. Am. Ceram. Soc., 1955, 38, (12): 423-432.

[7] Stroud J S. Color-center kinetics in cerium-containing glass. J. Phys. Chem., 1965, 43(7): 2442-2450.

[8] 王承遇, 陶 瑛, 主编. 玻璃材料手册. 北京: 化学工业出版社, 2007, 1(1): 757.

[9] 容超凡, 陈 军, 王志强, 等. 空间辐射剂量学浅谈. 辐射防护通讯, 2004, 24(1): 5-10.

[10] Heynderickx D, Quaghebeur B, Wera J, et al. New Radiation Environment and Effects Models in ESA's Space Environment Information System (SPENVIS). Proceedings of the 7th European Conference on Radiation and its Effects on Components and Systems, Noordwijk, The Netherlands, 2003: 643-646.

[11] Tylka A J, Adams J H, Jr, Boberg P R, et al. CREME96: a revision of the cosmic ray effects on micro-electronics code. IEEE Transactions on Nuclear Science, 1997, 44(6): 2150-2160.

[12] Armstrong T W, Colborn B L, Bentont E V. Model calculations of the radiation dose and let spectra on ldef and comparisons with flight data. Radiat. Meas., 1996, 26(6): 751-764.

[13] Armstrong T W, Colborn B L. Evaluation of Trapped Radiation Model Uncertainties for Spacecraft Design. NASA/CR-2000- 210072, Alabama, USA: Marshall Space Flight Center, 2000.

[14] Gusarov A, Doyle D, Fruit M. Towards a Database for Assessment of Nearearth Space Radiation Effects on Optical Glasses. In: Kleiman J I, Iskanderova Z. Protection of materials and structures from space environment: ICPMSE-6. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004: 113-122.

[15] Gilard O, Caussanel M, Duval H, et al. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses. J. Appl. Phys., 2010, 108(9): 093115-1-5.

[16] Kordas G, Camara B, Oel H J. Electron spin resonance of radiation damage in silicate glasses. J. Non-Cryst. Solids, 1982, 50(1): 79-95.

[17] Davis E A,- Mott N F. Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag., 1970, 22(179): 903-922.

[18] Agostinelliae S, Allisonas J, Amakoe K, et al. Geant 4-a simulation toolkit. Nucl. Instr. and Meth. A, 2003, 506: 250-303.

[19] Lei F, Truscott P R, Dyer C S, et al. Mulassis: a geant4-based multilayered shielding simulation tool. IEEE Trans. Nucl. Sci., 2002, 49(6): 2788-2793.

[20] 叶宗海. 空间粒子辐射探测技术. 北京: 科学出版社, 1986: 81.

[21] 方书淦. 张启仁. 晶体色心物理. 上海: 上海交通大学出版社, 1989: 14.

[22] 叶宗海. 空间粒子辐射探测技术. 北京: 科学出版社, 1986: 425-442.

[23] Everhart T E, Hoff P H. Determination of kilovolt electron energy dissipation vs penetration distance in solid materials. J. Appl. Phys., 1971, 42(13): 5837-5846.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%