欢迎登录材料期刊网

材料期刊网

高级检索

金属铀的化学性质十分活泼, 极易发生氧化腐蚀. 为改善基体的抗腐蚀性能, 采用非平衡磁控溅射技术在金属铀表面制备了不同氮含量的CrNx薄膜. 采用扫描电子显微镜(SEM)、X射线衍射技术(XRD)、X射线光电子能谱(XPS)、动电位极化曲线, 分别研究了薄膜形貌、物相结构、表面元素化学价态及抗腐蚀性能. 结果表明, 当氮流量为10 sccm时薄膜主要为体心立方的α-Cr, 随氮流量的增大, 薄膜转化为六方Cr2N和立方CrN结构, 其择优取向由Cr(110)转化为Cr2N(111)及CrN(200), 金属态Cr的含量逐渐减少, 氮化态Cr的含量增多, Cr2p3/2的结合能峰位逐渐向高结合能方向移动. CrNx薄膜呈纤维状结构, 当氮流量增大到30 sccm时, 生成了Cr2N的密排结构, 有效改善了薄膜的致密性. 在金属铀表面制备CrNx薄膜后, 自然腐蚀电位增大, 腐蚀电流密度降低, 当氮流量增大到30 sccm时, 薄膜的自然腐蚀电位提高了近550 mV左右, 腐蚀电流密度降低约两个数量级, 有效改善了贫铀表面的抗腐蚀性能.

The chemical nature of depleted uranium is very active and susceptible to oxidation in nature environment. CrNx films were prepared by unbalanced magnetron sputtering ion plating at different N2 flow on the surface of depleted uranium to improve its corrosion resistance. The surface morphology, phase structure, chemical state and corrosion behavior of CrNx films were characterized by SEM, XRD, XPS, and polarization curves (E/I). The results show that, phase structure of CrNx film prepared at 10 sccm N2 flow is composed primarily of the bcc α-Cr. With the increasing of N2 flow, the phase structures transform to HCP-Cr2N and fcc CrN, which preferred orientation transforms from Cr(110) to Cr2N(111) and CrN(200). When N2 flow increases from 10 sccm to 50 sccm, the Cr2p3/2 XPS peaks move toward high binding energy side, the content of metal Cr decreases and the content of nitride chromium increases. When N2 flow increases to 30 sccm, CrNx film has fine grain and better density, its corrosion potential increases to 550 mV and corrosion current density decreases two orders of magnitude. After deposited CrNx film by unbalanced magnetron sputtering, the corrosion resistance of depleted uranium is effectively improved.

参考文献

[1]
[2] Bland R D. A parametric study of ion-plating aluminum coatings on uranium. Electrochemical Technology, 1968, 6(7/8): 272-278.

[2] Briggs J L. Corrosion Resistance Behavior of Zinc Coatings on Uranium and Uranium Alloys. 1985, REP-3651.

[3] Chang F C, Levy M, Jackman B, et al. Assessment of corrosion resistance coating for a depleted uranium-0.75titanium alloys. Surface and Coatings Technology, 1991, 48(1): 31-39.

[4] Weirick L J. Evaluation of Metallic Coatings for the Corrosion Protection of a Uranium-3/4 Weight Percent Ti Alloy. Sardia Lab Report. 1974, SLL-73-5024.

[5] Bland R D, McDonald J E, Mattox D M. Ion Planted Coating for the Corrosion Protection of Uranium. Atomic Eenergy Commission contract Report, 1965, SC-DR-65-519.

[6] Greenwood R C, Ritchic A G. Preparation, Characteristic and Corrosion Resistance of Uranium Ion Plated with Aluminum. AWRE Report, 1982, 023/82.

[7] Raveh A, Arkush R, Zalkind S. Passivation of uranium metal by radio-frequency plasma nitriding against gas phase(H2,H2O) corrosion. Surface and Coatings Technology, 1996, 82(1): 38-42.

[8] 鲜晓斌, 吕学超, 张永彬. 在U表面循环Ar+轰击磁控溅射离子镀Al层. 腐蚀科学与防护技术, 2002, 14(2): 98-99.

[9] 王庆富, 张鹏程, 陈 林, 等. 铀表面脉冲偏压MSIP铝镀层的电化学腐蚀行为. 原子能科学技术, 2009, 43(7): 594-599.

[10] Liu T W, Dong C, Wu S, et al. TiN, TiN gradient and Ti/TiN multi-layer protective coatings on uranium. Surface and Coatings Technology, 2007, 201(15): 6737-6741.

[11] 刘天伟, 王小英, 江 帆, 等. 偏压对铀表面多弧离子镀Ti/TiN多层膜的结构及抗腐蚀性能影响研究. 原子能科学与技术, 2011, 45(8): 1020-1024.

[12] Lin Jianliang, Sproul W D, Moore J J, et al. High rate deposition of thick CrN and Cr2N coatings using modulated pulse power(MPP) magnetron sputtering. Surface and Coatings Technology, 2011, 205(10): 3226-3234.

[13] Elangovan T, Kuppusami P, Thirumurugesan R, et al. Nanostructured CrN thin films prepared by reactive pulsed DC magnetron sputtering. Materials Science and Engineering B, 2010, 167(1): 17-25.

[14] Han S, Lin J H, Wang G H, et al. The effect of preferred orientation on the mechanical properties of chromium nitride coatings deposited on SKD11 by unbalanced magnetron sputtering.--Materials Letters, 2003, 57(5/6): 1202-1209.

[15] Conde A, Cristó
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%