欢迎登录材料期刊网

材料期刊网

高级检索

为了提高传统YVO4:Eu3+荧光粉的发光效率及稳定性, 采用水热法制备合成了YVO4:Eu3+@YPO4纳米核壳结构荧光粉, 通过X射线衍射仪(XRD)、透射电镜(TEM)和荧光光谱仪(PL)等测试手段对所得样品进行表征. XRD和TEM测试结果表明: 由水热法合成的YVO4:Eu3+@YPO4荧光粉包含YVO4:Eu3+核心和YPO4壳层两种结构, 荧光粉粒径为10~30 nm, 壳厚为5~10 nm, 形态规则、粒径均匀、结晶度高; 荧光光谱测试结果表明: YVO4:Eu3+@YPO4荧光粉比单纯YVO4:Eu3+荧光粉的发光效率高出66.75%, 且具有较高的色纯度. 结合第一性原理方法, 对YVO4和YPO4晶体的能带结构进行理论计算, 定性说明了电子跃迁和发光的关系.

In order to improve the stability and luminous efficiency of YVO4:Eu3+ phosphor, YVO4:Eu3+@YPO4 nano core-shell phosphor was prepared by using hydrothermal method. X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence spectra were used to characterize the feature of YVO4:Eu3+@YPO4 core-shell phosphor. The XRD and TEM results indicate that the synthetic products are composed of the YVO4:Eu3+ core and YPO4 shell. The core-shell phosphor with diameter of 10–30 nm and shell thickness of 5–10 nm, regular crystalline morphologies, highly uniform in size and distribution, high degree of crystallinity. The photoluminescence spectra show that the luminous efficiency of YVO4:Eu3+@YPO4 core-shell phosphor is 66.75% higher than that of YVO4:Eu3+ phosphor, which also has high color purity. Furthermore, the first principle calculation is used to calculate the band-structure of the YVO4 and YPO4 crystals. On base of the calculated result, the relationship between the electron transition and the luminance is illustrated.

参考文献

[1]
[2] Shapiro A G, J Pokorny, V C Smith. Cone-crod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra. JOSA A, 1996, 13(12): 2319-2328.

[2] Althues H, Simon P, Kaskel S. Transparent and luminescent YVO4:Eu/polymer nanocomposites prepared by in situ polymerization. Journal of Materials Chemistry, 2007, 17(8): 758-765.

[3] Kandarakis I, Cavouras D, Panayiotakis G S, et al. Evaluating x-ray detectors for radiographic applications: a comparison of ZnSCdS: Ag with and screens. Physics in Medicine and Biology, 1997, 42: 1351-1373.

[4] Jing X, Ireland T, Gibbons C, et al. Control of Y2O3: Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV. Journal of the Electrochemical Society, 1999,146: 4654-4658.

[5] Wu C C, Chen K B, Lee C S, et al. Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P) O4: Eu3+ as a potential red-emitting PDP phosphor. Chemistry of Materials, 2007, 19(13): 3278-3285.

[6] Kim C H, Kwon I E, Park C H, et al. Phosphors for plasma display panels. Journal of Alloys and Compounds, 2000, 311(1): 33-39.

[7] Rao R. Tm3+ activated lanthanum phosphate: a blue PDP phosphor. Journal of Luminescence, 2005, 113(3/4): 271-278.

[8] 邓新荣, 胡国荣, 彭 忠, 等. PDP 用红色荧光粉的研究进展. 材料导报, 2006, 20(2): 40-43.

[9] LIU Yi, ZHAO Ming-Lei, ZENG Yu-Ping, et al. Synthesis and spectra properties of YVO4:Eu nanoparticles. Journal of Inorganic Materials, 2010, 9(25): 957-960.

[10] Qiang L, G Lian, Y Dongsheng. Effects of the coating process on nanoscale Y2O3:Eu3+ powders. Chem. Mater., 1999, 11(3): 533-535.

[11] 钟 伟. 基于SiO2核&ndash
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%