欢迎登录材料期刊网

材料期刊网

高级检索

采用金刚石砂轮对(RBSiC)进行磨削, 系统研究了表面形貌、残余应力和弯曲强度等磨削特征. 结果显示, 材料主要以脆性断裂去除, 局部区域为塑性切除. 随着轴向进给增大, 表面粗糙度(Ra)增加, 为降低Ra可进行适当光刀. 随着轴向进给增加, 磨削区的冷却效果被削弱, 使磨削残余压应力值下降. 与0.9 μm/s相比, 用1.35 μm/s磨削后试样的表面损伤程度增加. 工作台转速2.1 r/min、轴向进给0.9 μm/s并光刀1 min是保证高加工效率并获得较好质量表面的最优参数.

Surface topography, surface residual stress and bending strength of RBSiC ground using diamond wheel were studied. Grinding RBSiC is removed mainly by brittle fracture and lightly by ductile cutting. With the increase of down feed, surface roughness Ra increases. Burnishing with no down feed can improve the Ra in some way. With increasing down feed, the compressive residual stress decreases because of an inadequately cooling effect. Compare with the specimens grounded using 0.9 μm/s, those using down feed of 1.35 μm/s have worse surface quality. Considering both the processing efficiency and the surface quality, the optimum parameters are as follow: 0.9 μm/s down feed, 2.1 r/min work table rotational speed and 1 min burnishing.

参考文献

[1]
[2]
[3] Goela J S, Desai H D, Taylor R L, et al. Thermal stability of CVDSiC lightweight optics. SPIE, 1995, 2543: 38-48.

[2] 郝寅雷, 赵文兴, 翁志成. 新型反射镜材料&mdash
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%