通过制备含有不同丝素蛋白(SF)含量的丝素蛋白/纳米羟基磷灰石复合材料, 着重研究丝素蛋白含量对纳米羟基磷灰石(n-HA)仿生矿化过程中晶体成核与生长及体外细胞相容性的影响. 结果表明: SF的加入对n-HA晶体的成核和生长具有明显的调控作用; 丝素含量的大小对n-HA晶体成核和生长没有明显的区别, 但对晶粒在有机大分子中的聚集状态有明显的影响: 当SF含量不超过20wt%时, n-HA晶粒呈现放射状团簇, 当SF含量超过20wt%时, n-HA晶粒无序团聚. 体外细胞相容性结果显示, SF的加入可以促进材料与细胞的界面亲和性, 但SF含量对这种亲和性的影响不明显, 20wt%和30wt%的SF含量对增殖能力具有较强的促进作用.
Silk fibroin and hydroxyapatite nanocomposites (SF/HA) with various SF content were prepared. Effect of Silk fibroin content on the bionic mineralization and cellular compatibility in vitro of HA nanocrystals (n-HA) was investigated. The results show that SF content has an obvious effect on the nucleation and growth of n-HA. However, though SF content does not show obvious difference on the nucleation and growth of n-HA, it has obvious effect on the n-HA aggregation. When SF content is less than 20wt%, n-HA orderly disperses in SF matrix. While the SF content is more than 20wt%, the n-HA aggregation becomes disordered. The in vitro cellular compatibility experiments demonstrate that the SF/HA composites exhibit better cell affinity than pure n-HA. However, SF content has no obvious effect on the cell affinity of n-SF/HA 20wt% SF/HA and 30wt% SF/HA show better osteoblast proliferation.
参考文献
[1] | |
[2] | |
[3] | |
[4] | WangYongzhong, Kim Hyeon-Joo, Gordana Vunjak-Novakovic, et al. Stem cell-based tissue engineering with silk biomaterials.  |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%