欢迎登录材料期刊网

材料期刊网

高级检索

用高温熔融法制备了Tm2O3摩尔掺杂浓度分别为0.1%、0.25%、0.5%、0.75%和1%的33Bi2O3-50SiO2-17PbO玻璃.采用DSC方法对该种玻璃的析晶性能进行研究,发现其Tx-Tg为138℃,说明该玻璃抗析晶性能良好.基于其吸收光谱,采用 Judd-Ofelt理论计算了Tm3+离子的J-O参数和部分激发态能级的跃迁几率、荧光寿命和分支比等光谱参量.分析3F4能级寿命随掺杂浓度变化关系,发现产生自淬灭的临界浓度为3.54x 1020 ions/cm3.用McCumber理论计算在33Bi2O3-50SiO2-17PbO玻璃中Tm3+离子3F4→3H6能级跃迁的吸收截面和发射截面,最大吸收截面和最大受激发射截面分别为3.7×10-21和7.2×10-21 cm2.研究结果表明33Bi2O3-50SiO2-17PbO玻璃具有较好的光谱性质,是一种实现~2μm激光的较理想玻璃基质.

参考文献

[1] Walsh B.Review of Tm and Ho materials; spectroscopy and lasers.Laser Phys,,2009,19(4):855-866.
[2] 姜中宏,刘粤惠,戴世勋.新型光功能玻璃.北京:化学工业出版社,2008:13-14.
[3] Frith G,Lancaster D G,Jackson S D.85 W Tm3+-doped silica fibre laser.Electron Lett.,2005,41(12):687-688.
[4] Wang Q,Geng J,Luo T,et al.Mode-locked 2 μm laser with highly thulium-doped silicate fiber.Opt.Lett,2009,34(23):3616-3618.
[5] Li K F,Zhang G Hu L L.Watt-level 2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber.Opt.Lett.,2010,35(24):4136-4138.
[6] Wu J F,Yao Z D,Zong J,et al.Highly efficient high-power thulium-doped germanate glass fiber laser.Opt.Lett.,2007,32(6):638-640.
[7] Walsh B M,Barnes N P.Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm.Appl Phys B-Lasers O,2004,78(3/4):325-333.
[8] Lin H,Wang X,Li C,et al.Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S-and U-band amplifiers and 1.8 μm infrared laser.J.Luminescence,2008,128(1):74-80.
[9] Fan H Y,Gao G J,Wang G N,et al.Tm3+ doped Bi2O3-GeO2-Na2O glasses for 1.8 μm fluorescence.Opt.Mater.,2010,32(5):627-631.
[10] Pan Z,Henderson D O,Morgan S H.Vibrational spectra of bismuth silicate glasses and hydrogen-induced reduction effects.J.Non-Cryst.Solids,1994,171(2):134-140.
[11] Witkowska A,Rybicki J,Bosko J,et al.A molecular dynamics study of lead-bismuth-silicate glasses.IEEE Trans.Nucl.Sci.,2001,8(3):385-389.
[12] Yu S L,Yang Z M,Xu S H.Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.J.Luminescence,2010,20(3):745-751.
[13] Tanabe S,Ohyagi T,Todoroki S,et al.Relation between the Ω6 intensity parameter of Er3+ ions and the[5]Eu isomer shift in oxide glasses.J.Appl.Phys.,1993,73(12):8451-8454.
[14] Yeh D C,Petrin R R,Sibley W A,et al.Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass.Phys.Rev.B,1989,39(1):80.
[15] LI Ke-Feng,WANG Guo-Nian,HU Li-Li et al.Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses.Journal of Inorganic Materials,2010,25(04):429-434.
[16] Shi D M,Zhang Q Y,Yang G F,et al.Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+.JNon-Cryst Solids,2007,353(16/17):1508-1514.
[17] Balda R,Fernandez J,Garcia-Revilla S,et al.Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass.Opt.Express,2007,15(11):6750-6761.
[18] Auzel F,Baldacchini G,Laversenne L,et al.Radiation trapping and self-quenching analysis in Yb3+,Er3+,and Ho3+ doped Y2O3.Opt.Mater.,24(1/2):103-109.
[19] Balda R,Fernández J,Arriandiaga M A,et al.Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses.Opt.Mater.,2006,28(11):1253-1257.
[20] Auzcl F.A fundamental self-generated quenching center for lanthanide-doped high-purity solids.J.Luminescence,2002,100(1-4):125-130.
[21] Fusari F,Lagatsky A A,Richards B,et al.Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 μm.Opt.Express,2008,16(23):19146-19151.
[22] Tian Y,Xu R R,Zhang L Y,et al.1.8 μm emission of highly thulium doped fluorophosphate glasses.J.Appl.Phys.,2010,108(8):3504-1-7.
[23] Peng B,Izumitani T.Optical properties,fluorescence mechanisms and energy transfer in Tm3+,Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses,sensitized by Yb3+.Opt.Mater.,1995,4(6):797-810.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%