欢迎登录材料期刊网

材料期刊网

高级检索

利用热压烧结方法原位合成了TiB2-TiC0.8-SiC复相陶瓷.通过光学显微镜(OM)、X射线衍射分析仪(XRD)和扫描电子显微镜(SEM)对材料物相组成和微观结构进行表征.研究了热压条件下烧结温度对材料物相组成、结构及力学性能的影响.结果表明:烧结温度在1700~1950℃范围内,随着温度的升高,材料的致密度、抗弯强度和断裂韧性都有显著改善.烧结温度为1900℃可得到完全致密的原位合成TiB2-TiC0.8-SiC复相陶瓷,材料的晶粒发育比较完善,条状TiB2和块状TiC0.8晶粒清晰可见.复合材料的维氏硬度、断裂韧性和弯曲强度分别达到23.6 GPa,(7.0±1.0) MPa·m1/2和470.9MPa.当温度达到1950℃时,由于增强相TiB2晶粒长大,材料的强度降低.TiB2、TiC0.8与SiC颗粒协同,通过裂纹偏转、晶粒拔出、晶粒细化等机制对复合材料起到颗粒增强增韧的作用.

参考文献

[1] Mestral F D,Thevenot F.Ceramic composites:TiB2-TiC-SiC Part Ⅰ:properties and microstructures in the ternary system.J.Mater.Sci.,1991,26(20):5547-5560.
[2] Vallauri D,Atlas I C,Chrysanthou A.TiC-TiB2 composites:a review of phase relationships,processing and properties.J.Eur.Ceram.Soc.,2008,28(8):1697-1713.
[3] Min X M,Wang T.Chemical bond and property of TiC-TiB2 composites.Mater Sci.Forum,2011,689(64):64-68.
[4] Zhao Z M,Zhang L,Liu W Y,et al.Bulk ultrahard composites in the eutectic TiB2-TiC system by SHS under high gravity.Int.J.Self-Propag.High-Temp.Synth.,2009,18(3):186-193.
[5] Cabrero J,Cabrero J,Audubert E et al.Fabrication and characterization of sintered TiC-SiC composites.J.Eur Ceram.Soc.,2011,31(3):313-320.
[6] Ghosh J,Mazumdar S,Das M,et al.Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling.Mater.Res.Bull.,2008,43(4):1023-1031.
[7] Dudina D V,Hulbert D M,Jiang D,et al.In situ boron carbide titanium diboride composites prepared by mechanical milling and subsequent sparking plasma sintering.J.Mater.Sci.,2008,43(10):3569-3576.
[8] Wang H,Wu W,Sun S,et al.Characterization of the structure of TiB2/TiC nanocomposite powders fabricated by high-energy ball milling.Ceram.Int.,2011,37(7):2689-2693.
[9] Qiu L X,Yao B,Ding Z H,et al.Characterization of structure and properties of TiN-TiB2 nanocomposite prepared by ball milling and high pressure heat treatment.J.Alloys Compd.,2008,456(1):436-440.
[10] Barsoum M W,Houng B.Transient plastic phase processing of titaniumboron-carbon composites.J.Am.Ceram.Soc,1993,76(6):1445-1451.
[11] Luo Z H,Yang R Z,Pan C Z.Preparation and properties of TiC-TiB2 composite ceramic.J.Ceram.,2011,32(3):353-355.
[12] Zhu D G,Yin X D,Xiao C.In situ synthesized TiB2-TiC-SiC ceramic composite.Xinan Jiaotong Daxue Xuebao,1999,34(1):71-74.
[13] Bucevac D,Boskovic S,Matovic B,et al.Toughening of SiC matrix with in-situ created TiB2 particles.Ceram.Int.,2010,36(7):2181-2188.
[14] Wang W,Lian J B,Ru H Q.Study on synthetic conditions of TiB2/SiC ceramic composite.J.Mater.Metall.,2011,10(1):23-29.
[15] Wang W,Lian J B,Yue X Y,et al.In-situ synthesized TiB2 toughened SiC microstructure and fracture toughness.Dongbei Daxue Xuebao,2011,32(11):1579-1581.
[16] Gu W,Yang J,Qiu T,et al.In situ synthesized and mechanical properties of (TiB2+TiC)/Ti3SiC2 composites.J.Inorg.Biochem.,2010,25(10):224-227.
[17] 孙红亮.原位合成 TiB2-TiCx 陶瓷及其氧化性能研究.成都:西南交通大学,2005.
[18] Jiang J,Zhu D G,Wang L H.In situ synthesis of TiB2-TiCx ceramic matrix composite by hot iosostatic pressing.Xinan Jiaotong Daxue Xuebao,2004,39(1):132-139.
[19] Brodkin D,Kalidindi S R,Barsoum M W,et al.Microstructural evolution during transient plastic phase processing of titanium carbide-titanium boride composites.J.Am.Ceram Soc,1996,79(7):1945-1952.
[20] Sun H L,Zhu D G.Microstructures of in-situ TiB2-TiCx multiphase ceramics.J.Ceram.,2005,26(3):159-162.
[21] Murray J L,Liao P K,Spear K E.The B-Ti(borontitanium) system.BULLAPD,1986,7(6):550-553.
[22] Wen G,Li S B,Zhang B S,et al.Reaction synthesis of TiB2/TiC composites with enhanced toughness.Acta Mater.,2001,49(8):1463-1470.
[23] Wang G S,Geng L,Zheng Z Z,et al.Effect of compression deformation at temperature the solid-liquid two-phase region on the microstructure and properties of SiCw/6061A1 composites.Acta Mater.Compos.Sin.,2000,17(4):58-61.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%