欢迎登录材料期刊网

材料期刊网

高级检索

在前期对冷等静压制备柔性染料敏化太阳电池(DSC)研究的基础上,开展了浆料的优化及叠层DSC的研究.首先利用水热法处理由小颗粒P25调配的浆料,发现处理后浆料的稳定性及DSC的效率得到了大幅提高.在P25浆料中加入不同比例200 nmTiO2大颗粒提高光散射,当P25与200 nm TiO2比例为4∶1时,DSC获得最高光电转换效率3.11%.在此基础上,尝试用N719和N749双层染料敏化,发现双层染料敏化后电池的效率介于N719和N749单独敏化的电池效率,这可能是由于光阳极变厚不利于电子传输以及染料相互接触影响染料纯度,光阳极厚度及电池结构有待于进一步优化.

参考文献

[1] O'Regan B,Gr(a)tzel M.A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature,1991,353(6346):737-740.
[2] Yella A,Lee H,Gr(a)tzel M,et al.Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency.Science,201 1,334(6056):629-634.
[3] ZHAO Xiao-Chong,YANG Pan,LIN Hong,et al.Optimization of fabrication parameters of flexible dye-sensitized solar cells.Journal of the Chinese Ceramic Society,2010,38(1):25-28.
[4] YANG Li,XIN Gang,MA Ting-Li,et al.Flexible dye-sensitized solar cells.Progress in Chemistry,2009,21(10):2242-2249.
[5] Ito S,Murakami T,Liska P,et al.Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%.Thin Solid Films,2008,516(14):4613-4619.
[6] Park N G,Kim K M,Kang M G,et al.Chemical sintering of nanoparticles:a methodology for low-temperature fabrication of dye-sensitized TiO2 films.Adv.Mater.,2005,17(19):2349-2353.
[7] Ikegami M,Suzuki J,Mayasaka T,et al.Improvement in durability of flexible plastic dye-sensitized solar cell modules.Solar Energy Materials & Solar Cells,2009,93(6/7):836-839.
[8] MA Ting-Li.Progress in a new type of plastic organic solar cell.Progress in Chemistry,2006,18(2/3):176-181.
[9] Hart J N,Menzies D,Cheng Y B,et al.A comparison of microwave and conventional heat treatments of nanocrystalline TiO2.Solar Energy Materials & Solar Cells,2007,91(1):6-16.
[10] Uchida S,Tomiha M,Zakizawa H,et al.Flexible dye-sensitized solar cells by 28 GHz microwave irradiation.J.Photochem.Photobiol.A,2004,164(1/2/3):93-96.
[11] Zhang D S,Yoshida T,Minoura H.Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells.J.Photochem.Photobiol.A,2004,164(1/2/3):159-166.
[12] Longo C,Freitas J,De PaoLi M A,etal.Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte.J.Photochem.Photobiol.A,2003,159(1):33-39.
[13] Yamaguchi Takeshi,Tobe Nobuyuki,Matsumoto Daisuke,et al.Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%.Solar Energy Materials & Solar Cells,2010,94(5):812-816.
[14] Yamaguchi Takeshi,Tobe Nobuyuki,Matsumoto Daisuke,et al.Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes.Chem.Commun.,2007(45):4767-4769.
[15] Weerasinghe H C,Sirimanne P M,Simon G P,et al.Cold isostatic pressing technique for producing highly efficient flexible dye-sensitised solar cells on plastic substrates.Progress in Photovoltaics,2011,20(3):321-332.
[16] Shao J Z,Liu F J,Dong W W,et al.Low temperature preparation of TiO2 films by cold isostatic pressing for flexible dye-sensitized solar cells.Materials Letters,2012,68:493-496.
[17] Zhang D S,Downing J A,Knorr F J,et al.Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.J.Phys.Chem.B,2006,110(43):21890-21898.
[18] Xiao Y M,Wu J H,Li Q H,et al.Preparation of photoanode and its application to flexible dye-sensitized solar cells.Chinese Sci.Bull.,2009,54(16):2425-2430.
[19] Nazeeruddin M K,Kay A,Rodicio I,et al.Conversition of light to electricity by cis-x2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (x=-Cl-,Br-,I-,CN-,and SCN-) on nanocrystalline TiO2 electrodes.J.Am.Chem.Soc.,1993,115(14):6382-6390.
[20] HUANG Yi-Min,LIU Zhi-Yong,WANG Xiao-Qi,et al.Tandem dye-sensitized solar cell based on metal mesh.Journal of Inorganic Materials,2011,26(7):774-778.
[21] 孔凡太,戴松元,王孔嘉.多吡啶钌染料的优化设计及其在染料敏化太阳电池中的应用.合肥:安徽节能减排博士科技论坛,2007:604-608.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%