欢迎登录材料期刊网

材料期刊网

高级检索

以C04(CO)12和Se为原料,采用低温回流方法在乙二醇介质中合成了CoSeO3化合物.利用扫描电镜(SEM)、X射线衍射仪(XRD)和旋转圆盘电极(RDE)技术表征合成的化合物微观形貌、结构特征和电化学性能.这种化合物主要由单斜结构的CoSeO3·H2O晶粒组成,粒径大小约为26.7 nm,具有规则的晶体外形.在25℃,0.5 mol/L H2SO4电解液中,CoSeO3化合物对氧还原反应(ORR)表现出明显的电催化活性,开路电位为0.80 V(vs NHE).根据Koutecky-Levich方程计算出每个氧分子还原过程转移的电子数约为3.8.在0.64~0.76 V(vs NHE)电位范围内,测得催化剂的传递系数、Tafel斜率和交换电流密度分别为0.50、119 mV和1.98×10-6 mA/cm2.CoSeO3化合物的催化活性和电化学稳定性也与商品Pt催化剂进行了比较.

参考文献

[1] Gasteiger H A,Kocha S S,Sompalli B,et al.Activity benchmarks and requirements for Pt,Pt-alloy,and non-Pt oxygen reduction catalysts for PEMFCs.Appl.Catal.B,2005,56(1/2):9-35.
[2] Suárez-Alcántara K,Rodrfguez-Castellanos A,Durón-Torres S,et al.RuxCrySez electrocatalyst loading and stability effects on the electrochemical performance in a PEMFC.J.Power Sources,2007,171(2):381-387.
[3] Gao M R,Jiang J,Yu S H.Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction.Small,2012,8(1):13-27.
[4] Susac D,Sode A,Zhu L,et al.A methodology for investigating new nonprecious metal catalysts for PEM fuel cells.J.Phys.Chem.,2006,110(22):10762-10770.
[5] Feng Y,He T,Alonso-Vante N.In situ free surfactant synthesis and ORR electrochemistry of carbon-supported Co3S4 and CoSe2nanoparticles.Chem.Mater,2008,20(1):26-28.
[6] Feng Y,He T,Alonso-Vante N.Oxygen reduction reaction on carbonsupported CoSe2 nanoparticles in an acidic medium.Electrochim.Acta,2009,54(22):5252-5256.
[7] Feng Y,He T,Alonso-Vante N.Carbon supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium.Fuel Cells,2010,10(1):77-83.
[8] Zhu L,Teo M,Wong P C,et al.Synthesis,characterization of a CoSe2 catalyst for the oxygen reduction reaction.Appl.Catal.A:General,2010,386(1/2):157-165.
[9] Engelen B,Baumer U,Hermarm B,et al.Polymorphic and pseudosymmetrical hydrates MSeO3.H2O (M =Mn,Co,Ni,Zn,Cd).Z.Anorg.Allg.Chem.,1996,622(11):1886-1892.
[10] Wildner M.Crystal structure of a new modification of CoSeO3.J.Solid State Chem.,1995,120(1):182-186.
[11] ZHAO Dong-Jiang,YIN Ge-Ping,WANG Zhen-Bo,et al.Catalytic performance of RuxCoySez nano-cluster towards cathode oxygen reduction reaction.Scientia Sinica Chimica,201 1,41(12):1791-1797.
[12] Patterson A L.The scherrer formula for X-ray particle size determination.Phys.Rev.,1939,56(15):978-982.
[13] Zhao D,Zhang S,Yin G,et al.Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity.J.Power Sources,2012,206(2):103-107.
[14] Suarez-Alcantara K,Solorza-Feria O.Kinetics and PEMFC performance of RuxCrySez nanoparticles as a cathode catalyst.Electrochim.Acta,2008,53(15):4981-4989.
[15] Hsueh K L,Chin D T,Srinivasan S.Electrode kinetics of oxygen reduction:a theoretical and experimental analysis of the rotating ring-disc electrode method.J.Electroanal.Chem.,1983,153(1/2):79-95.
[16] Suarez-Alcantara K,Rodriguez-Castellanos A,Dante R,et al.RuxCrySez electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell.J.Power Sources,2006,157(1):114-120.
[17] Lee K,Zhang L,Zhang J.Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction.Electrochem.Commun.,2007,9(7):1704-1708.
[18] LAI Yuan,ZHOU De-Bi,HU Jian-Wen,et al.Electrochemical performance of Co-N/C complex catalyst for alkaline fuel cell.Acta Chimica Sinica,2008,66(9):1015-1020.
[19] Cheng H,Yuan W,Scott K,et al.The enhancement effect of tungsten on the kinetics of oxygen reduction at novel RuSeW electrocatalysts.J.New Mat.Electrochem.Systems,2008,11(3):147-156.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%