欢迎登录材料期刊网

材料期刊网

高级检索

创伤、骨肿瘤、关节置换术等引起骨缺损的修复是目前临床治疗的难点和研究热点领域,寻找理想的骨修复材料已经成为该领域的重点研究方向.硫酸钙骨水泥作为骨修复材料已有百余年历史,有着显著的优势.但其降解过快的缺点影响了治疗效果,限制了应用范围.本文对硫酸钙的理化特性、晶粒形貌与晶型控制、合成方法等进行了系统介绍,总结了硫酸钙与羟基磷灰石、生物玻璃、磷酸钙和硅酸钙复合材料及其性能研究的新成果,并提出了克服硫酸钙作为骨修复材料的缺点的若干方法.

参考文献

[1] Calori G M,Mazza E,Colombo M,et al.The use of bone-graft substitutes in large bone defects:any specific needs? Injury,2011,42(S2):S56-63.
[2] Resano M,García-Ruiz E,Alloza R,et al.Laser ablation-inductively coupled plasma mass spectrometry for the characterization of pigments in prehistoric rock art.Anal.Chem.,2007,79(23):8947-8955.
[3] Moore W R,Graves S E,Bain G I.Synthetic bone graft substitutes.Anz.J.Surg.,2001,71(6):354-361.
[4] Peltier L F,Bickel E Y,Lillo R,et al.The use of plaster of Paris to fill defects in bone.Ann.Surg.,1957.146(1):61-69.
[5] Peltier L F.The use of plaster of Paris to fill defects in bone.Clin.Orthop.,1961,21:1-31.
[6] Guarnieri R,Aldini NN,Pecora G,et al.Medial-grade calcium sulfate hemihydrate (surgiplaster) in healing of a human extraction socket--histologic observation at 3 months:a case report.Int.J.Oral.Maxillofac.Implants,2005,20(4):636-641.
[7] Hak D J.The use of osteoconductive bone graft substitutes in orthopaedic trauma.J.Am.Acad.Orthop.Surg.,2007,15(4):525-536.
[8] Thomas M V,Puleo D.Calcium sulfate:properties and clinical applications.J.Biomed.Mater.Res.Part B:Appl.Biomater.,2009,88B(3):597-610.
[9] Pedersen B F,Semmingsen D.Neutron diffraction refinement of the structure of gypsum,CaSO4·2H2O.Acta Crystallogr,Sect.B:Struct.Sci.,1982,38(4):1074-1077.
[10] Schofield P F,Knight K S,Stretton I C.Thermal expansion of gypsum investigated by neutron powder diffraction.Am.Mineral.,1996,81(7/8):847-851.
[11] de la Torre (A) G,López-Olmo M-G,(A)lvarez-Rua C,et al.Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses.Powder Diffr.,2004,19(3):240-246.
[12] Gallitelli P.Calcium sulfate hemihydrate and soluble anhydrite.Period.Mineral.,1933,4:1-42.
[13] Bezou C,Nonat A,Mutin J-C,et al.Investigation of the crystal structure of γ-CaSO4,CaSO4.0.SH2O,and CaSO4·0.6H2O by powder diffraction methods.J.Solid State Chem.,1995,117(1):165-176.
[14] Abriel W,Nesper R.Determination of the crystal structure of calcium sulfate hemihydrate by X-ray diffraction and potential-profile calculations.Z.Kristallogr.,1993,205(1):99-113.
[15] Fl(o)rke O W.Crystallographic and X-ray study in the system CaSO4-CaSO4-2H2O.Neues Jahrb.Mineral.Monatsh.,1952,84:189-240.
[16] Lager G A,Armbruster T,Rotella F J,et al.A crystallographic study of the low-temperature dehydration products of gypsum,CaSO4.2H2O∶ hemihydrate CaSO4·0.5H2O,and γ-CaSO4.Am.Mineral.,1984,69(9/10):910-919.
[17] Kirfel A,Will G.Charge density in anhydrite,CaSO4,from X-ray and neutron diffraction measurements.Acta Crystallogr,Sect.B:Struct.Sci.,1980,36(12):2881-2890.
[18] Ling Y,Demopoulos G P.Preparation of α-calcium sulfate hemihydrate by reaction of sulfuric acid with lime.Ind.Eng.Chem.Res.,2005,44 (4):715-724.
[19] Yang D S.France National Scciety of Plasters Industries.Plaster:Physics-Chemistry and Fabrication-Apllication.Beijing:China Architecture-Building Press,1987.
[20] Christofferson J,Christifferson M R.The kinetics of calcium sulfate dihydration in water.J.Cryst.Growth.,1976,35(1):79-88.
[21] Dumazer G,Narayan V,Smith A,et al.Modeling gypsum crystallization on a submicrometric scale.J.Phys.Chem.C,2009,113(4):1189-1195.
[22] Saha A,Lee J,Pancera S M,et al.New Insights into the transformation of calcium sulfate hemihydrate to gypsum using time-resolved cryogenic transmission electron microscopy.Langmuir,2012,28(30):11182-11187.
[23] Finot E,Lesniewska E,Mutin J C,et al.Investigations of surface forces between gypsum microcrystals in air using atomic force microscopy.Langmuir,2000,16(9):4237-4244.
[24] Jaffel H,Korb J-P,Ndobo-Epoy J-P,et al.Probing micro-structure evolution during the hardening of gypsum by proton NMR relaxometry.J.Phys.Chem.B,2006,110(14):7385-7391.
[25] Jaffel H,Korb J-P,Ndobo-Epoy J-P,et al.Multi-scale approach continuously relating the microstructure and the macroscopic mechanical properties of plaster pastes during their settings.J.Phys.Chem.B,2006,110 (37):18401-18407.
[26] Annie Lemarchand,Florent Boudoire,Elodie Boucard,et al.Plaster hydration at different plaster-to-water ratios:acoustic emission and 3-dimensional submicrometric simulations.J.Phys.Chem.C,2012,116(7):4671-4678.
[27] Li Z,Demopoulos G P.Solubility of CaSO4 phases in aqueous HCl + CaCl2 solutions from 283 K to 353 K.J.Chem.Eng.Data,2005,50(6):1971-1982.
[28] Fisher RD,Mbogoro MM,Snowden M E,et al.Dissolution kinetics of polycrystalline calcium sulfate-based materials:influence of chemical modification.ACS Appl.Mater.Interfaces,2011,3(9):3528-3537.
[29] Mbogoro M M,Snowden M E,Edwards M A,et al.Intrinsic kinetics of gypsum and calcium sulfate anhydrite dissolution:surface selective studies under hydrodynamic control and the effect of additives.J.Phys.Chem.C,2011,115(20):10147-10154.
[30] Klepetsanis P G,Dalas E,Koutsoukos P G.Role of temperature in the spontaneous precipitation of calcium sulfate dihydrate.Langmuir,1999,15(4):1534-1540.
[31] Christensen A N,Olesen M,Cerenius Y,et al.Formation and transformation of five different phases in the CaSO4-H2O system:crystal structure of the subhydrate β-CaSO4.0.5H2O and soluble anhydrite CaSO4 Chem.Mater,2008,20(6):2124-2132.
[32] Akyol E,Oner M,Barouda E,et al.Systematic structural determinants of the effects of tetraphosphonates on gypsum crystallization.Cryst.Growth Des.,2009,9(12):5145-5154.
[33] Massaro F R,Rubbo M,Aquilano D.Theoretical equilibrium morphology of gypsum (CaSO4·2H2O).1.A syncretic strategy to calculate the morphology of crystals.Cryst.Growth Des.,2010,10(7):2870-2878.
[34] Massaro F R,Rubbo M,Aquilano D.Theoretical equilibrium morphology of gypsum (CaSO4·2H2O).2.The stepped faces of the main[001]zone.Cryst.Growth Des.,2011,11(5):1607-1614.
[35] Rubbo M,Bruno M,Massaro F R,et al.The five twin laws of gypsum (CaSO4·2H2O)∶ A theoretical comparison of the interfaces of the penetration twins.Cryst.Growth Des.,2012,12(6):3018-3024.
[36] Rubbo M,Bruno M,Massaro F R,et al.The five twin laws of gypsum (CaSO4·2H2O)∶ a theoretical comparison of the interfaces of the contact twins.Cryst.Growth Des.,2012,12(1):264-270.
[37] Ling Y,Demopoulos G R Preparation of α-Calcium sulfate hemihydrate by reaction of sulfuric acid with lime.Ind.Eng.Chem.Res.,2005,44 (4):715-724.
[38] 彭红霞.常压盐溶液法-半水脱硫石膏的制备及晶形调控研究.重庆:重庆大学硕士论文.2010.04.
[39] Guan B,Jiang G,Fu H,et al.Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol-water solution under mild conditions.Ind.Eng Chem Res.,2011,50(23):13561-13567.
[40] Guan B,Ma X,Wu Z,et al.Crystallization routes and metastability of r-calcium sulfate hemihydrate in potassium chloride solutions under atmospheric pressure.J.Chem.Eng.Data,2009,54(9):719-725.
[41] Fu H,Guan B,Jiang G,et al.Effect of supersaturation on competitive nucleation of CaSO4 phases in a concentrated CaCl2 solution.Cryst Growth Des,2012,12(3):1388-1394.
[42] Guan B,Yang L,Wu Z.Effect of Mg2+ ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions.Ind.Eng.Chem.Res.,2010,49(12):5569-5574.
[43] Kong B,Guan B,Yates M Z.Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions.Langmuir,2012,28(40):14137-14142.
[44] Woo K M,Yu B,Jung H M,et al.Comparative evaluation of different crystal-structured calcium sulfate as bone-filling materials.J.Biomed Mater.Res.B.Appl.Biomater.,2009,91B(2):545-554.
[45] Rees G D,Evans G R,Hammond S J,et al.Formation and morphology of calcium sulfate nanoparticles and nanowires in waterin-oil microemulsions.Langmuir,1999,15(6):1993-2002.
[46] Yang L X,Meng Y F,Yin P,et al.Shape control synthesis of low-dimensional calcium sulfate.Bull.Mater Sci.,2011,34(2):233-237.
[47] Song X,Sun S,Fan W,et al.Preparation of different morphologies of calcium sulfate in organic media.J.Mater Chem.,2003,13(7):1817-1821.
[48] Chen Y,Wu Q,Ding Y.Stepwise assembly ofnanoparticles,-tubes,-rods,and-wires in reverse micelle systems.Eur.J.Inorg.Chem.,2007,2007(31):4906-4910.
[49] Park Y B,Mohan K,Al-Sanousi A,et al.Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration.Biomed.Mater.,2011,6(5):055007.
[50] Calhoun N R,Greene G W,Blackledge G T.Plaster:a bone substitute in the mandible of dogs.J.Dent.Res.,1965,44(5):940-946.
[51] Al Ruhaimi K A.Effect of adding resorbable calcium sulfate to grafting materials on early bone regeneration in osseous defects in rabbits.Int.J.Oral Max.Impl.,2000,15(6):859-866.
[52] Walsh W,Morberg P,Yu Y,et al.Response of a calcium sulfate bone graft substitute in a confined cancellous defect.Clin.Orthop.Relat.Res.,2003,406(1):228-235.
[53] Yu X W,Xie X H,Yu Z F,et al.Augmentation of screw fixation with injectable calcium sulfate bone cement in ovariectomized rats.J.Biomed.Mater.Res.Part B:Appl.Biomater.,2009,89(1):36-44.
[54] Liu D,Lei W,Wu Z,et al.Augmentation ofpedicle screw stability with calcium sulfate cement in osteoporotic sheep:biomechanical and screw-bone interfacial evaluation.J.Spinal Disord.Tech.,2011,24 (4):235-241.
[55] Caba(n)as M V,Rodríguez-Lorenzo L M,Vallet-Regí M.Setting behavior and in vitro bioactivity of hydroxyapatite/calcium sulfate cements.Chem.Mater,2002,14(8):3550-3555.
[56] Lei D,Wardlaw D,Hukins D.Mechanical properties of calcium sulphate/hydroxyapatite cement.Biomed Mater.Eng.,2006,16(6):423-428.
[57] Chen Z,Liu H,Cui F Z.Injectable calcium sulfate/mineralized collagen-based bone repair materials with regular self-setting properties.J.Biomed.Mater Res.A,2011,99A(4):554-563.
[58] Nilsson M,Wang J S,Wielanek L,et al.Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.J.Bone Joint Surg.Br,2004,86B(1):120-125.
[59] Rauschmann M,Vogl T,Verheyden A,et al.Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (spine support):in vertebral compression fractures due to osteoporosis.Eur.Spine.J.,2010,19(6):887-892.
[60] Rauschmann M A,Wichelhaus T A,Stirnal V,et al.Nano-crystalline hydroxyapatite and calcium sulphate as degradable composite carrier material for local delivery of antibiotics in bone infections.Biomaterials,2005,26(15):2677-2684.
[61] Brown W,Chow L.A new calcium phosphate setting cement.J.Dent.Res.,1983,62(672):384-390.
[62] Bohner M.New hydraulic cements based on α-tricalcium phosphatecalcium sulfate dihydrate mixtures.Biomaterials,2004,25(4):741-749.
[63] Guo H,Wei J,Liu C.Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction.Biomed.Mater,2006,1(4):193-197.
[64] Pinto A J,Cameiro J,Katsikopoulos D,et al.The link between brushite and gypsum:miscibility,dehydration,and crystallochemical behavior in the CaHPO4·2H2O-CaSO4·2H2O.Cryst.Growth Des.,2012,12(1):445-455.
[65] Urban R M,Turner T M,Hall D J,et al.Increased bone formation using calcium sulfate-calcium phosphate composite graft.Clin.Orthop.Relat.Res.,2007,459:110-117.
[66] Yang H L,Zhu X S,Chen L,et al.Bone healing response to a synthetic calcium sulfate/β-tricalcium phosphate graft material in a sheep vertebral body defect model.J.Biomed.Mater Res.B Appl.Biomater 2012,100B(7):1911-1921.
[67] Liu S J.Applications of biomedical calcium phosphate/calcium sulfate composites in vertebroplasty.Chin.J.Med.Guide,2011,13(8):1433-1434.
[68] Hench L L,Splinter R J,Allen W,et al.Bonding mechanisms at the interface of ceramic prosthetic materials.J.Biomed.Mater.Res.,1971,5(6):117-141.
[69] Camargo P M,Lekovic V,Weinlaender M,et al.Influence of bioactive glass on changes in alveolar process dimensions after exodontia.Oral.Surg.Oral.Med.Oral.Pathol.Oral.Radiol.Endod.,2000,90(5):581-586.
[70] Melo L G N,Nagata M J H,Bosco A F,et al.Bone healing in surgically created defects treated with either bioactive glass particles,a calcium sulfate barrier,or a combination of both materials.Clin.Oral.Implants.Res.,2005,16(6):683-691.
[71] Furlaneto F AC,Nagata M J H,Fucini S E,et al.Bone healing in critical-size defects treated with bioactive glass/calcium sulfate:a histologic and histometric study in rat calvaria.Clin.Oral.Implants.Res.,2007,18(3):311-318.
[72] Lee S J,Monsef M,Torabinejad M.Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations.J.Endod.,1993,19(11):541-544.
[73] Wu C T,Chang J,Zreiqat H.Engineered Ca-Si Based Ceramics for Skeletal Tissue Reconstruction.Hussain N S,Santos J D.(editor),Biomaterials for Bone Regenerative Medicine.Trans.Tech.Publishers,Switzerland,2010:121-150.
[74] Shie M Y,Ding S J,Chang H C.The role of silicon in osteoblastlike cell proliferation and apoptosis.Acta Biomater.,2011,7(6):2604-2614.
[75] Huang Z G,Chang J,Huang X H.Self-setting properties and in vitro bioactivity of Ca2SiO4/CaSO4.1/2H2O composite bone cement.J.Biomed.Mater Res.B Appl.Biomater,2008,87B(2):387-394.
[76] Huang Z G,Chang J.Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements.Acta Biomater.,2007,3(6):952-960.
[77] Bell W H.Resorption characteristics of bone and bone substitutes.Oral Surg.Oral Med.Oral Pathol.,1964,17(5):650-657.
[78] Du C,Wang Y J.Progress in biomineralization study of bone and enamal and biomimetic synthesis of calcium phosphate.J.Inorg.Mater.,2009,24(5):882-888.
[79] Geesink R G T,De Groot K,Klein C.Bonding of bone to apatitecoated implants.J.Bone Joint Surg.,1988,70(1):17-22.
[80] Lu J,Descamps M,Dejou J,et al.The biodegradation mechanism of calcium phosphate biomaterials in bone.J.Biomed.Mater Res.,2002,63(4):408-412.
[81] Yang S B,Wang J,Liu C.Research on calcium phosphate cement bone adhesive.J.Inorg.Mater,2013,28(1):85-90.
[82] Hench L L,Wilson J.Surface-active biomaterials.Science,1984,226(4675):630-633.
[83] Hench L L,Thompson I.Twenty-first century challenges for biomaterials.J.Royal Soc.Interf.,2010,7(Suppl 4):S379-S391.
[84] Wu C T,Chang J.Silicate bioceramics for bone tissue regeneration.J.Inorg.Mater.,2013,28(1):29-39.
[85] Xu S,Lin K,Wang Z,et al.Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.Biomaterials,2008,29(17):2588-2596.
[86] Liu,Q,Chen L,Yin S,et al.A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics.Biomaterials,2008,29(36):4792-4799.
[87] Xia L,Zhang Z,Chen L,et al.Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics.Eur Cell Mater,2011,22:68-82.
[88] Zhai W,Lu J,Chen L,et al.Silicate bioceramics induce angiogenesis during bone regeneration.Acta Biomater.,2012,8(1):341-349.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%