欢迎登录材料期刊网

材料期刊网

高级检索

为了保证核能源的使用安全,对氚在第一壁材料表面的滞留数量以及深度进行定量表征非常重要.在本研究中,制备了一系列潜在的第一壁材料B4C/Mo涂层,并采用成像板(IP)和β射线激发X射线(BIxs)法对其表面的氚滞留情况进行了测定.IP图像表明,涂层表面吸附的氚含量遵循以下顺序:B4C>BM 15>BM5>Mo.而BIXS结果进一步表明,对于B4C涂层,大部分氚扩散到了涂层内部;而对于其他三种涂层,氚仅在其表面发生吸附.扫描电镜(SEM)结果显示,B4C涂层气孔率最高,而其他三种涂层尽管气孔率较低,但其截面仍能观察到大量气孔和微裂纹的存在.涂层中的这些缺陷为氚的吸收和扩散提供了通道,而气孔与微裂纹的尺寸最终决定了氚在涂层表面的吸附数量.实验结果还表明,涂层杂质成分Ti的存在也对氚的滞留产生了一定影响.

参考文献

[1] Buzhinskij O I,Semenets Yu M.Thick boron carbide coatings for protection of tokamak first wall and divertor.Fusion Engineering andDesign,1999,45(4):343-360.
[2] K?tterl S,Bolt H,Greuner H,et al.Development of thick B4Ccoatings for the first wall of W7-X.Physica Scripta,2001(T91):117-123.
[3] Guo Q G,Li J G,Zhai G T,et al.The primary results for the mixed carbon material used for high flux steady-state tokamak operation in China.Journal of Nuclear Materials,2001,290-293:191-195.
[4] Guo Q G,Li J G,Noda N,et al.Selection of candidate doped graphite materials as plasma facing components for HT-7U device.Journal of Nuclear Materials,2003,313-316:144-148.
[5] Chen J L,Li J G,Li H,et al.Development of carbon based plasma facing components for steady state operation of the fusion devices in China.Physica Scripta,2004,T111:173-180.
[6] Luo G N,Li Q,Liu M,et al.Coating materials for fusion application in China.Journal of Nuclear Materials,2011,417(1/2/3):1257-1261.
[7] Chong F L,Chen J L,Li J G.Evaluation of tungsten coatings on CuCrZr and W/Cu FGM under high heat flux and HT-7 limiter plasma irradiation.Journal of Nuclear Materials,2007,363-365:1201-1205.
[8] Sun G Y,Friedrich M,Gr?tzschel R,et al.Quantitative AMS depth profiling of the hydrogen isotopes collected in graphite divertor and wall tiles of the tokamak ASDEX-Upgrade.Journal of Nuclear Materials,1997,246(1):9-16.
[9] Masaki K,Sugiyama K,Tanabe T,et al.Tritium distribution in JT-60U W-shaped divertor.Journal of Nuclear Materials,2003,313-316:514-518.
[10] Itami K,Coad P,Fundamenski W,et al.Observation of detachment in the JET MkIIGB divertor using CCD camera tomography.Journal of Nuclear Materials,2001,290-293:633-638.
[11] Matsuyama M,Arai H,Yamazaki T,et al.In-situ Measurement of High Level Tritium by Bremsstrahlung Counting Method (Ⅱ)Characteristics of Beryllium Window.Annual Report,Hydrogen Isotope Research Center,Toyama University,1993,13:51-61.
[12] Matsuyama M,Watanabe K,Hasegawa K.Tritium assay in materials by the bremsstrahlug counting method.Fusion Engineering and Design,1998,39-40:929-936.
[13] Matsuyama M,Ueda S,Watanabe K.In situ observation of tritium interactions with Pd and Zr by β-ray induced X-ray spectrometry.Fusion Engineering and Design,2000,49-50:885-891.
[14] Matsuyama M,Tanabe T,Noda N,et al.Nondestructive measurement of surface tritium by β-ray induced X-ray spectrometry (BIXS).Journal of Nuclear Materials,2001,290-293:437-442.
[15] Matsuyama M.Development of a new detection system for monitoring high-level tritiated water.Fusion Engineering and Design,2008,83(10/11/12):1438-1441.
[16] Matsuyama M,Takatsuka K,Ham M.Sensitivity of a specially designed calorimeter for absolute evaluation of tritium concentration in water.Fusion Engineering and Design,2010,85(10/11/12):2045-2048.
[17] Zheng X B,Matsuyama M,Niu Y R,et al.Tritium adsorption on tungsten and boron carbide coatings deposited by vacuum plasma spraying.Fusion Science and Technology,2012,62:46-49.
[18] Wu J,Yang Z S,Li Q,etal.BIXS measurements of tritium uptake in C and W materials for EAST.Journal of Nuclear Materials,2011,417(1/2/3):576-580.
[19] Sugiyama K,Miyasaka K,Tanabe T,et al.Tritium distribution on the surface of plasma facing carbon tiles used in JET.Journal of Nuclear Materials,2003,313-316:507-513.
[20] Yamagiwa M,Nakamura Y,Matsunami N,et al.In situ measurement of hydrogen isotope retention using a high heat flux plasma generator with ion beam analysis.Physica Scripta,2011,T145:014021-1-5.
[21] Amemiya S,Masuda T,Ando T,et al.Hydrogen isotope retention and impurity deposition of carbon based components used in JT-60U.Journal of Nuclear Materials,1995,220-222:443-447.
[22] Guo Q G,Liu Z J,Li J G,et al.High heat flux test of SiC coated doped graphite.Journal of Nuclear Materials,2007,363-365:1216-1220.
[23] Bolt H,Araki M,Linke J,et al.Heat flux experiments on first wall mock-ups coated by plasma sprayed B4C.Journal of Nuclear Materials,1996,233-237:809-813.
[24] Fuentes C,Blaumoser M,Botija J,et al.Development and tests of B4C-covered heat shields for TJ-Ⅱ.Fusion Engineering and Design,2001,56-57:315-319.
[25] Liu X,Chen J M,Zhang F,et al.High heat flux testing of B4C/Cu and SiC/Cu functionally graded materials simulated by laser and electron beam.Plasma Science and Technology,2002,4:1171-1176.
[26] D?ring J E,Vaβeen R,Linde J,et al.Properties of plasma sprayedboron carbide protective coatings for the first wall in fusion experiments.Journal o f Nuclear Materials,2002,307-311:121-125.
[27] Haasz A A,Davis J W.Deuterium retention in beryllium,molybdenum and tungsten at high fluences.Journal of Nuclear Materials,1997,241-243:1076-1081.
[28] Wampler W R,LaBombard B,Lipschultz B,et al.Molybdenum erosion measurements in Alcator C-Mod.Journal of Nuclear Materials,1999,266-269:217-221.
[29] Tanabe T,Bekris N,Coad P,et al.Tritium retention of plasma facing components in tokamaks.Journal of Nuclear Materials,313-316:478-490.
[30] Sugiyama K,Miyasaka K,Tanabe T,et al.Tritium distribution on the surface of plasma facing carbon tiles used in JET.Journal of Nuclear Materials,2003,313-316:507-513.
[31] Sugiyama K,Tanabe T,Miyasaka K,et al.Tritium profile in plasma-facing components following D-D operation.Journal of Nuclear Materials,2004,329-333:874-879.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%