欢迎登录材料期刊网

材料期刊网

高级检索

对复合电极介观微结构采用实验以及数值方法进行重构是开发锂离子电池孔尺度模型的基础和前提.本文采用Monte Carlo方法重构了LiCoO2电池正极的三维微结构,重构单元的特征尺寸为纳米量级,从而得到了明确区分活性材料、固体添加物以及孔相(电解液)的微结构,随后对重构电极进行了特征化分析,得到了微结构的连通性、比表面积等特征信息,并采用D3Q15 LBM模型计算了重构电极的有效热导率、电解液(或固相)的有效传输系数,电解液或固相的扭曲率.重建电极与实际电极的孔隙率、组分体积分数、相关函数等重要统计特性相一致.LB数值结果说明了有效传输参数与电极微构型的密切相关性.

参考文献

[1] Wang C W,Sastry A M.Mesoscale modeling ofa Li-ion polymer cell.J.Electrochem.Soc.,2007,154(11):A1035-A1047.
[2] Du W B,Gupta A,Zhang X C,et al.Effect of cycling rate,particle size and transport properties on lithium-ion cathode performance.Int.J.Heat Mass Transfer,2010,53(17/18):3552-3561.
[3] Gupta A,Seo J H,Zhang X C,Du,et al.Effective transport properties of LiMn2O4 electrode via particle-scale modeling.J.Electrochem.Soc.,2011,158(5):A487-A497.
[4] Spanne P,Thovert J F,Jacquin C J,et al.Synchrotron computed microtomography of porous media:topology and transports.Phys.Rev.Lett.,1994,73(14):2001-2004.
[5] Yoshizawa N,Tanaike O,Hatori H,et al.TEM and electron tomography studies of carbon nanospheres for lithium secondary batteries.Carbon,2006,44(12):2558-2564.
[6] Groeber M A,Haley B K,Uchic M D,et al.3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system.Mater Charact.,2006,57(4/5):259-273.
[7] Shearing P R,Golbert J,Chater R,et al.3D Reconstruction of SOFC anodes using a focused ion beam lift-out technique.J.Chem.Eng.Sci.,2009,64(17):3928-3933.
[8] Quiblier J.A new three-dimensional modeling technique for studying porous media.J.ColloidInterface Sci.,1984,98(1):84-102.
[9] Yeong C L Y,Torquato S.Reconstructing random media.Phys.Rev.E.,1998,57(1):495-506.
[10] Kim S H,Pitsch H.Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells.J.Electrochem.Soc.,2009,156(6):B673-B681.
[11] Stig Bakke,P(a)l-Eric (O)ren.3-D pore-scale modelling of sandstones and flow simulations in the pore networks.J.SPE,1997,2(2):136-149.
[12] Stephenson D E,Walker B C,Skelton C B,et al.Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes.J.Electrochem.Soc.,2011,158(7):A781-A789.
[13] Carson J K S,Lovatt J,Tanner D J,et al.Predicting the effective thermal conductivity of unfrozen,porous foods.J.Food Eng.,2006,75(3):297-307.
[14] Wang J F,Carson J K,North M F,et al.A new approach to modeling the effective thermal conductivity of heterogeneous materials.Int.J.Heat Mass Transfer,2006,49(17/18):3075-3083.
[15] Thovert J F,Wary F,Adler P M.Thermal conductivity of random media and regular fractals.J.Appl.Phys.,1990,68(8):3872-3883.
[16] Jiang F,Sousa A C M.Effective thermal conductivity of heterogeneous multi-component materials:an SPH implementation.Heat andMass Transfer,2006,43(5):479-491.
[17] Barta S,Dieska P.Effective thermal conductivity of particulate composite materials.Kovove Mater,2002,40(2):99-112.
[18] Wang M,Wang K,Pan N,et al.Mesoscopic predictions of the effective thermal conductivity for microscale random porous media.Phys.Rev.E.,2007,75(3):036702-1-10.
[19] Joshi A S,Grew K N,Izzo J R,et al.Lattice boltzmann modeling of three-dimensional,multicomponent mass diffusion in a solid oxide fuel cell anode.J.Fuel Cell Sci.Technol.,2010,7(1):011006-1-8.
[20] Torquato S.Random Heterogeneous Materials:Microstructure and Macroscopic Properties.Springer,2002:23-58.
[21] Zou Q,He X.On pressure and velocity boundary conditions for the lattice Boltzmann BGK model.Phys.Fluids,1997,9(6):1591-1598.
[22] Wang J K,Wang M,Li Z X.A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer.Int.J.Thermal Sci.,2007,46(3):228-234.
[23] Ziegler D.Boundary conditions for lattice boltzmann simulations.J.Stat.Phys.,1993,71 (5/6):1171-1177.
[24] Thorat V,Stephenson D E,Zacharias N A,et al.Quantifying tortuosity in porous Li-ion battery materials.J.Power Sources,2009,188(2):592-600.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%