以V2O5粉末、H2O2和Mn(CH3COO)2·4H2O为原料,采用水热法制备了纳米结构的锂离子电池阴极材料MnxV2O5.运用X射线衍射(XRD)、X射线光电子能谱分析(XPS)和扫描电镜(SEM)测试对制备的材料进行结构和形貌表征,并利用充放电测试和交流阻抗测试研究了样品的电化学性能.结果表明:随着锰掺杂量的增加,V2O5的正交晶型层状结构未发生改变,其层间距逐渐扩大,形貌由纳米短棒状向纳米带簇状变化.电化学测试表明:Mn2+掺杂提高了V2O5的电化学性能,其首次充放电效率由70.8%提高到90%以上;Mn0.01V2O5经过90次充放电循环后,其容量仍为192.2 mAh/g.Mn2+掺杂对V2O5电极材料的离子电导率有影响,Mn0.02V2O5离子电导率由未掺杂时的6.27× 10-4 S/cm提高到1.58×10-3 S/cm.
参考文献
[1] | Dimesso L,Forster C,Jaegermann W,et al.Developments in nanostructured LiMPO4 (M =Fe,Co,Ni,Mn) composites based on three dimensional carbon architecture.Chemical Society Reviews,2012,41(15):5068-5080. |
[2] | Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries.Nature,2001,414(6861):359-367. |
[3] | Chernova N A,Roppolo M,Dillon A C,et al.Layered vanadium and molybdenum oxides:batteries and electrochromics.Journal of Materials Chemistry,2009,19(17):2526-2552. |
[4] | Whittingham M S.Lithium batteries and cathode materials.Chemical Reviews-Columbus,2004,104(10):4271-4302. |
[5] | Muhr H J,Krumeich F,Sch(o)nholzer U P,et al.Vanadium oxide nanotubes-a new flexible vanadate nanophase.Advanced Materials,2000,12(3):231-234. |
[6] | Seng K H,Liu J,Guo Z P,et al.Free-standing V2O5 electrode for flexible lithium ion batteries.Electrochemistry Communications,2011,13(5):383-386. |
[7] | Xiong C,Aliev A E,Gnade B,et al.Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics.ACS Nano,2008,2(2):293-301. |
[8] | Song H K,Lee K T,Kim M G,et al.Recent progress in nanostructured cathode materials for lithium secondary batteries.Advanced Functional Materials,2010,20(22):3818-3834. |
[9] | Bruce P G,Scrosati B,Tarascon J M.Nanomaterials for rechargeable lithium batteries.Angewandte Chemie International Edition,2008,47(16):2930-2946. |
[10] | Coustier F,Passerini S,Smyrl W H.Dip-coated silver-doped V2O5 xerogels as host materials for lithium intercalation.Solid State Ionics,1997,100(3/4):247-258. |
[11] | Leger C,Bach S,Soudan P,et al.Evaluation of the Sol-Gel mixed oxide Cr0.11V2O5.16 as a rechargeable positive electrode working in the potential range 3.8/1.5 V vs Li.Solid State Ionics,2005,176(15):1365-1369. |
[12] | WEI Ying-Jin,LI Xu,WANG Chun-Zhong,et al.Preparation and electrochemical proprtties of Cu doped V2O5.Acta Physico-Chimica Sinica,2007,23(7):1090-1094. |
[13] | Jaya T,Jayaram P,Ramachandran T,et al.Synthesis of solid solutions of Mn and Bi substituted V2O5 and substitutional effect in structural and optoelectronic behavior.Physica B:Condensed Matter,2012,407(8):1214-1218. |
[14] | Dobley A,Ngala K,Yang S,et al.Manganese vanadium oxide nanotubes:synthesis,characterization,and electrochemistry.Chemistry of Materials,2001,13(11):4382-4386. |
[15] | Park H K.Manganese vanadium oxides as cathodes for lithium batteries.SolidState Ionics,2005,176(3):307-312. |
[16] | Giorgetti M,Berrettoni M,Smyrl W H.Doped V2O5-based cathode materials:where does the doping metal go? An X-ray absorption spectroscopy study.Chemistry of Materials,2007,19(24):5991-6000. |
[17] | Hara D,Shirakawa J,Ikuta H,et al.Charge-discharge reaction mechanism of manganese vanadium oxide as a high capacity anode material for lithium secondary battery.Journal of Materials Chemistry,2002,12(12):3717-3722. |
[18] | Whittingham M S,Zavalij P Y.Control of the structure and properties of vanadium and manganese oxides through tailored soft synthesis.International Journal of Inorganic Materials,2001,3(8):1231-1236. |
[19] | Silversmit G,Depla D,Poelman H,et al.Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+to V0+).Journal of Electron Spectroscopy and Related Phenomena,2004,135(2):167-175. |
[20] | Larachi F,Pierre J,Adnot A,et al.Ce3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts.Applied Surface Science,2002,195(1):236-250. |
[21] | Yu D M,Zhang S T,Liu D W,et al.Effect of manganese doping on Li-ion intercalation properties of V2O5 films.Journal of Materials Chemistry,2010,20(48):10841-10846. |
[22] | Cheah Y L,Gupta N,Pramana S S,et al.Morphology,structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries.Journal of Power Sources,2011,196(15):6465-6472. |
[23] | O'Dwyer C,Lavayen V,Tanner D A,et al.Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity.Advanced Functional Materials,2009,19(11):1736-1745. |
[24] | Perera S D,Patel B,Nijem N,et al.Vanadium oxide nanowire carbon nanotube binder-free flexible electrodes for supercapacitors.Advanced Energy Materials,2011,1(5):936-945. |
[25] | Cocciantelli J,Menetrier M,Delmas C,et al.On the δ → γ irreversible transformation in Li//V2O5 secondary batteries.Solid State Ionics,1995,78(1):143-150. |
[26] | LIU Guo-Cong,LIU You-Nian,LIU Su-Qing,et al.Sol-Gel synthesis and electrochemical performance of Li3V2-2x/3Mnx(PO4)3cathode material for lithium-ion batteries.Journal of Inorganic Materials,2012,27(10):1017-1022. |
[27] | Cui Y,Zhao X,Guo R.Improved electrochemical performance of La07Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process.Electrochimica Acta,2010,55(3):922-926. |
[28] | Qiao Y Q,Wang X L,Xiang J Y,et al.Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source.Electrochimica Acta,2011,56(5):2269-2275. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%