欢迎登录材料期刊网

材料期刊网

高级检索

仅以乙醇和四水合醋酸锰为原料,快速低成本地合成了介孔四氧化三锰纳米棒,并将其应用于锂离子电池负极材料.通过X射线衍射、热重分析仪、扫描电子显微镜、透射电子显微镜和比表面积仪等分析手段对四氧化三锰样品进行了表征.实验结果表明:介孔四氧化三锰纳米棒的平均直径约为150 rm,孔的尺寸范围为6~20 nm,BET比表面积高达37.3 m2/g.同时,介孔四氧化三锰纳米棒负极材料在141 mA/g的电流密度下循环100次后可逆充放电容量为676.1和662.4 mAh/g,而且其在不同的电流密度下继续循环80次后可逆放电容量高达850 mAh/g,体现出了较高的容量、好的循环稳定性能和倍率性能.

参考文献

[1] Poizot P,Laruelle S,Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.Nature,2000,407(6803):496-499.
[2] Lou X W,Wang Y,Yuan C,et al.Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity.Adv.Mater,2006,18(17):2325-2329.
[3] Li Y,Tan B,Wu Y.Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability.Nano Lett.,2008,8(1):265-270.
[4] Guo Z P,Du G D,Nuli Y,et al.Ultra-fine porous SnO2 nanopowder prepared via a molten salt process:a highly efficient anode material for lithium-ion batteries.J.Mater Chem.,2009,19(20):3253-3257.
[5] Hu Y,Huang X,Wang K,et al.Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes.J.SotidState Chem.,2010,183(3):662-667.
[6] Fang X,Lu X,Guo X,et al.Electrode reactions of manganese oxides for secondary lithium batteries.Electrochem.Commun.,2010,12(11):1520-1523.
[7] Du Y P,Zhang Y W,Sun L D,et al.Self-assembled ferromagnetic monodisperse manganese oxide nanoplates synthesized by a modified nonhydrolytic approach.J.Phys.Chem.C,2009,113(16):6521-6528.
[8] Seo W S,Jo H H,Lee K,et al.Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles.Angew.Chem.Int.Ed.,2004,43(9):1115-1117.
[9] Yang L X,Zhu Y J,Tong H,et al.Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study.J.Solid State Chem.,2006,179(4):1225-1229.
[10] Li P,Nan C,Wei Z,et al.Mn3O4 Nanocrystals:facile synthesis,controlled assembly,and application.Chem.Mater,2010,22(14):4232-4236.
[11] Ahmed K A M,Zeng Q,Wu K,et al.MnsO4 nanoplates and nanoparticles:synthesis,characterization,electrochemical and catalytic properties.J.Solid State Chem.,2010,183(3):744-751.
[12] Ren T Z,Yuan Z Y,Hu W,et al.Single crystal manganese oxide hexagonal plates with regulated mesoporous structures.Micropor.Mesopor.Mater,2008,112(1/2/3):467-473.
[13] Shao C,Guan H,Liu Y,et al.Preparation of Mn2O3 and Mn3O4 nanofibers via an electrospinning technique.J.Solid State Chem.,2004,177(7):2628-2631.
[14] Wang H,Cui L F,Yang Y,et al.Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.J.Am.Chem.Soc.,2010,132(7):13978-13980.
[15] Gao J,Lowe M A,Abruna H D.Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries.Chem.Mater.,2011,23(13):3223-3227.
[16] Nohman A K H,Ismail H M,Hussein G A M.Thermal and chemical events in the decomposition course of manganese compounds.J.Anal.Appl.Pyroylsis.,1995,34(2):265-278.
[17] Luo J Y,Zhang J J,Xia Y Y.Highly electrochemical reaction of lithium in the ordered mesoporosus β-MnO2.Chem.Mater.,2006,18(23):5618-5623.
[18] Jiang H,Zhao T,Yan C,et al.Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances.Nanoscale,2010,2(10):2195-2198.
[19] Xiao L,Yang Y,Yin J,et al.Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage.J.Power Sources,2009,194(2):1089-1093.
[20] Lin Y,Mi C,Su L,et al.Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries.Electrochim.Acta,2008,53(5):2507-2513.
[21] Hassan M F,Guo Z,Chen Z,et al.α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries.Mater.Res.Bull.,2011,46(6):858-864.
[22] Chen J,Xu L,Li W,et al.α-Fe2O3 Nanotubes in gas sensor and lithiumion battery applications.Adv.Mater.,2005,17(5):582-586.
[23] Nam K T,Kim D W,Yoo P J,et al.Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.Science,2006,312(5775):885-888.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%