欢迎登录材料期刊网

材料期刊网

高级检索

以NaCl为稀释剂,B2O3、ZrO2和Mg粉为原料,利用燃烧合成法成功制备了亚微米ZrB2粉体,并对其进行了SEM、EDS,XRD和粒度分析.结果表明:随着稀释剂添加量增加,体系绝热温度下降;浸出产物是由少量的大尺寸颗粒和大量的小尺寸颗粒形成的弱团聚体;稀释剂摩尔数k值从0.5增加到1.5时,产物平均颗粒尺寸从305nm降低到160 nm;产物浸出后主要物相为ZrB2和ZrO2,后者含量随稀释剂添加量增加而降低.稀释剂可以提供液态介质,促进质量传输,提高产物纯度,还可以降低体系燃烧温度,并包覆在产物表面抑制其结晶长大,降低颗粒尺寸.

参考文献

[1] JI Jia-Ming,Zhou Fei,LI Zhong-Hua.Electron theory studies on structures and properties for TiB2 and ZrB2 phase.The Chinese Journal of Nonferrous Metals,2000,10(4):358-360.
[2] Sonber J K,Murthy Ch T S R,Subramanian C,et al.Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2.Int.Journal of Refractory Metals and Hard Materials,2011,29(6):21-30.
[3] XIONG Jin-Song,WANG Xi-Tang.Application of ZrB2 in inorganic nonmetallic materials.J.Wuhan Uni.Sci.Tech.,2006,29(3):229-232.
[4] SONG Jie-Guang,LUO Hong-Mei,DU Da-Ming,et al.Research and prostect of ceramic materials.Materials Review,2009,23(2):43-52.
[5] Ma Cheng-Liang,FENG Jian-Qiu,WANG Chun-Cheng.Synthesis of ZrB2 Powders in Industry.Bulletin of the Chinese Ceramic Society,2008,27(3):622-625.
[6] Setondeh N,Welham N J.Formation of zirconium diboride (ZrB2)by room temperature mechanochemical reaction between ZrO2,B2O3 and Mg.J.Alloys Compd.,2006,420(7):225-228.
[7] Chamberlain A L,Fahrenholtz,W G,Hilmas G E.Reactive hot pressing of zirconium diboride.Journal of the European Ceramic Society,2009,29(7):3401-3408.
[8] Lee Y B,Park H C,Oh K D.Self-propagating high-temperature synthesis of ZrB2 in the system ZrO2-B2O3-Fe2O3-Al.Journal of Materials Science Letters,2000,19(10):469-471.
[9] FANG Zhou,WANG Hao,FU Zheng-Yi.Preparation of ZrB2 ceramic powder in B-Zr system by self-propagating high-temperature synthesis.Journal of The Chinese Ceramic Society,2004,32(8):1016-1018.
[10] Camurlu H E,Maglia F.Preparation of nano-size ZrB2 powder by self-propagating high temperature synthesis.Journal of the European Ceramic Society,2009,29(9):1501-1506.
[11] ZHU Shi-Zhen,CHE Xiao-Pan,XU Qiang,et al.Synthesis of ultra-fine zirconium diboride powders by Sol-Gel and precursor py rolysis method.Rare Metal Materials and Engineering,2010,39(S2):18-21.
[12] JIA Quan-Li,ZHANG Hai-Jun,JIA Xiao-Lin,et al.Microwave carbothermal synthesis of ZrB2 powders using Sol-Gel precursors.Materials Review,2007,21(11A):65-67.
[13] Moore J J,Feng H J.Combustion synthesis of advanced materials:Part Ⅰ.Reaction parameters.Progress in Materials Science,1995,39(11):245-246.
[14] Dufaux D P,Axelbaum R L.Nanoscale Unagglmoerated Nonoxide Particles from a Sodium Coflow Flame,The Twenty-Fifth Symposium (International) on Combustion,Irvine,California,31 July-5 August 1994:350-358.
[15] Nersisyan H H,Lee J H,Won C W.A study of tungsten nanopowder formation by self-propagating high-temperature synthesis.Combustion andFlame,2005,142(3):142-148.
[16] Khanra A K,Pathak L C,Godkhidi M M.Double SHS of ZrB2 powder.Journal of Materials Processing and Technology,2008,202(9):386-390.
[17] Nersisyan H H,Lee J H,Won C W.Combustion of TiO2-Mg and TiO2-Mg-C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders.Materials Research Bulletin,2003,38(4):1135-1146.
[18] Nersisyan H H,Lee J H,Lee S I,et al.The role of the reaction medium in the self propagating high temperature synthesis of nanosized tantalum powder.Combustion and Flame,2003,135(8):539-545.
[19] LA Pei-Qing,HAN Shao-Bo,JU Qian,et al.Study of the influence of different stoichometry of Mg in staring mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis.Powder Metallurgy Technology,2013,31(1):1-7.
[20] 叶大伦,胡建成.无机物热力学数据手册.北京:冶金工业出版社,2002.
[21] 张鹏林.镁热剂反应自蔓延高温合成TiB2和ZrB2陶瓷及其结构宏观动力学研究.兰州:兰州理工大学博士论文,2008.
[22] Khanra A K.Reaction chemistry during self-propagating high-temperature synthesis (SHS) of H3BO3-ZrO2-Mg system.Materials Research Bulletin,2007,42(1):2224-2229.
[23] Merzhanov A G,Borovinskaya I P.Historical retrospective of SHS:an autoreview.International Journal of Self-Propagating HighTemperature Synthesis,2008,17(4):242-265.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%