欢迎登录材料期刊网

材料期刊网

高级检索

低温技术的不断发展使其应用于越来越多的领域中,例如航空航天、超导、核聚变等.在一些低温工程领域中,结构陶瓷有着其他材料不可替代的应用前景.本文综述了低温极端环境下几种典型结构陶瓷材料的国内外研究现状与进展,包括氧化锆基结构陶瓷在低温下的相变机理与性能、氧化铝陶瓷的低温性能以及氮化硅、碳化硅等非氧化物陶瓷在低温下的基础力学性能及断裂机理.

参考文献

[1] ZOU J,ZHANG G J,HU C F,et al.Strong ZrB2-SiC-WC ceramics at 1600 ℃.Journal of American Ceramic Society,2012,95(3):874-878.
[2] ZHANG G J,ZOU J,WEI N D,et al.Boride Ceramics:densification,microstructure tailoring and properties improvement.Journal of Inorganic Materials,2012,27(3):225-233.
[3] 斯温 M.V.主编,郭景坤.陶瓷的结构与性能.北京:科学出版社,1998.
[4] 李成功,傅恒志,于翘,航空航天材料.北京:国防工业出版社,2002.
[5] 陈国邦,低温工程材料.杭州:浙江大学出版社,1998.
[6] VANSTONE R H,LOW J R,SHANNON J L.Investigation of fracture mechanism of Ti-5Al-2.5Sn at cryogenic temperatures.Metal Transaction A,1978,9:539-552.
[7] SCHUTZ J B.Properties of composite materials for cryogenic applications.Cryogenics,1998,38:3-12.
[8] NISHIJIMA S,OKADA T,KANAMARU M,et al.Researchand-development of thermal shield support under radiation environment in large helical device.Cryogenics,1992,32:195-198.
[9] EXCELL J A,MARMACH M.Reversible cryogenically induced tetragonal to monoclinic phase-transformation in Mg-PSZ.American Ceramic Society Bulletin,1986,65:1404-1407.
[10] MARSHALL D B,JAMES M R,PORTER J R.Structural and mechanical property changes in toughened magnesia-partiallystabilized zirconia at low-temperatures.Journal of American Ceramic Society,1989,72:218-227.
[11] SRINIVASAN S,SCATTERGOOD R O,PFEIFFER G,et al.Low-temperature treatment of transformation-toughened partially stabilized magnesia-doped zirconia-a solid particle erosion study.Journal of American Ceramic Society,1990,73:1421-1424.
[12] VEITCH S,MARMACH M,SWAIN M V.Strength and toughness of Mg-PSZ and Y-TZP materials at cryogenic temperatures.Mater.Res.Soc.Symp.Proc.,1987,78:97-106.
[13] BECHER P F,SWAIN M V,FERBER M K.Relation of transformation temperature to the fracture-toughness of transformationtoughened ceramics.Journal of Materials Science,1987,22:76-84.
[14] YOSHIMURA M,SEKINO T,UENO S,et al.Mechanical properties of Mg-PSZ at cryogenic temperature.Scripta Materials,1998,40:171-175.
[15] CHEN I-WEI,CHIAO Y H.Theory and experiment of martensitic nucleation in ZrO2 containing ceramics and ferrous alloys.Acta Metallurgica,1985,33:1827-1845.
[16] HEUER A H,CLAUSSEN N,KRIVEN W M,et al.Stability of tetragonal ZrO2 particles in ceramic matrices.Journal of American Ceramic Society,1982,65:642-650.
[17] HANNINK R H J.Growth morphology of tetragonal phase in partially stabilized zirconia.Journal of Materials Science,1978,13:2487-2496.
[18] BROOKS H.Metal Interfaces.Cleveland,Ohio:American Society for Metals,1962.
[19] NAKANISHI N,SHIGEMATSU T.Bainite-like transformation in zirconia ceramics.Materials Transaction,1991,32:778-784.
[20] NAKANISHI N,SHIGEMATSU T.Martensitic transformations in zirconia ceramics.Materials Transaction,1992,33:318-323.
[21] BECHER P F,SWAIN M V.Grain-size-dependent transformation behavior in polycrystalline tetragonal zirconia.Journal of American Ceramic Society,1992,75:493-502.
[22] REYESMOREL P E,CHEN I W.Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals.1.Stress assistance and auto-catalysis.Journal of American Ceramic Society,1988,71:343-353.
[23] CLAUSSEN N H A H,RUHLE M.Advances in Ceramics,vol.12.Science and Technology of Zirconia ii.Columbus,OH:American Ceramic Society,1985.
[24] ZHU H Y.X-ray diffraction study of the t-to-m phase transformation in 12-mol%-Ceria-doped zirconia at low temperatures.Journal of American Ceramic Society,1994,77:2458-2460.
[25] LI L F,HONG C S,LI Y Y,et al.Martensitic transformation in ZrO2-based ceramics at cryogenic temperatures.Cryogenics,1996,36:7-11.
[26] LI L F,HONG C S,ZHANG Z,et al.Microstructure of a sintered 16.5mol% CeO2-ZrO2 alloy at cryogenic temperature.Journal of Materials Science,1997,32:6395-6398.
[27] LI L F,LI Y Y,SBAIZERO O,et al.ZrO2-CeO2 alloys as candidate structural materials for cryogenic application.Journal of American Ceramic Society,1997,80:1005-1008.
[28] LANGE F F.Transformation toughening.5.Effect of temperature and alloy on fracture-toughness.Journal of Materials Science,1982,17:255-262.
[29] LAI T R,HOGG C L,SWAIN M V.Evaluation of fracture-toughness and R-curve behavior of Y-TZP ceramics.ISIJ International.1989,29:240-245.
[30] CHEN H B,XIE Z P.Phase transformation and Exceptional mechanical properties of 3Y-TXP at cryogenic temperature.Rare Metal Materials & Engineering,2009,38(S2):157-160.
[31] XUE W J,XIE Z P,LIU G W,et al.R-curve behavior of 3Y-TZP at cryogenic temperatures.Journal of American Ceramic Society,2011,94:2775-2778.
[32] XUE W J,XIE Z P,YI J,et al.Critical grain size and fracture toughness of 2mo1% yttria-stabilized zirconia at ambient and cryogenic temperatures.Scripta Materialia,2012,67:963-966.
[33] XIE Z P,XUE W J.Effect of Y2O3 contents and grain sizes on the mechanical properties and transformation of zirconia ceramics at cryogenic temperatures.Rare Metal Materials & Engineering,2013,42(S1):256-259.
[34] BECHER P F,ALEXANDER K B,BLEIER A,et al.Influence of ZrO2 grain-size and content on the transformation response in the Al2O3-ZrO2 (12mol-percent CeO2) system.Journal of American Ceramic Society,1993,76:657-663.
[35] SUZUKI N,UCHIDA T,SUZUKI K.Test method and strength characteristics of alumina ceramics at cryogenic temperatures.Cryogenics,1998,38:363-366.
[36] OTA K.Elastic-modulus and the measurement of structural ceramics at cryogenic temperatures.Cryogenics,1995,35:735-737.
[37] XIE Z P,XUE W J,CHEN H B,et al.Mechanical and thermal properties of 99% and 92% alumina at cryogenic temperatures.Ceramics International,2011,37:2165-2168.
[38] XIE Z P,XUE W J,CHEN H B.Research of mechanical and thermal properties of Al2O3 at cryogenic temperatures.Rare Metal Materials & Engineering,2011,40(S1):597-599.
[39] NOSAKA M,OIKE M,KIKUCHI M,et al.Tribo-characteristics of self-lubricating ball-bearings for the le-7 liquid-oxygen rocketturbopump.Tribology Transactions,1993,3:432-442.
[40] BURSEY R W C H A,OLINGER J B.Advanced Hybrid Rolling Element Bearings for the Space Shuttle Main Engine High Pressure Alternate Turbopumps.32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,1996.
[41] NOSAKA M,KIKUCHI M,OIKE M,et al.Tribo-characteristics of cryogenic hybrid ceramic ball beatings for rocket turbopumps:Bearing wear and transfer film.Tribology Transactions,1999,42:106-115.
[42] NOSAKA M,OIKE M,KIKUCHI N,et al.Tribo-characteristics of cryogenic hybrid ceramic ball bearings for rocket turbopumps:self-lubricating performance.Tribology Transactions,1997,40:21-30.
[43] GU L,WANG L Q,LI X J.Load-bearing properties of silicon nitride bearing balls under ultra-low temperature.Journal of Harbin Institute of Technology,2002,34:148-151.
[44] XUE W J,YI J,XIE Z P,et al.Enhanced fracture toughness of silicon nitride ceramics.Scripta Materialia,2012,66:891-894.
[45] XUE W J,MA T,XIE Z P,et al.Research into mechanical properties of reaction-bonded SiC composites at cryogenic temperatures.Materials Letters,2011,65:3348-3350.
[46] XUE W J,XIAO B,XIE Z P,et al.Research of mechanical and thermal properties of SiC at cryogenic temperatures.Rare Metal Materials & Engineering,2011,40(S1):510-513.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%