利用基于密度泛函理论的第一性原理的方法研究了超薄钛酸铅(PbTiO3)纳米管的铁电性及力电耦合特性.研究发现对于钛酸铅铁电纳米管结构,即使在其特征尺寸小于铁电薄膜的铁电临界尺寸时,依然存在自发极化.钛酸铅铁电纳米管结构不存在铁电临界尺寸.对纳米管力电耦合效应的研究发现,轴向应变作用会引起包括极化沿轴向方向的铁电相、顺电相和极化沿周向方向的铁电相在内的丰富的相转变.这种相的转变是由于轴向应力所导致的Pb-O共价键的变化所引起的.另一方面,研究了钛酸铅纳米管结构的机械强度,明确了在轴向拉伸和压缩作用下纳米管的临界载荷.
参考文献
[1] | 钟维烈.铁电体物理学.北京:高等教育出版社,1996:7-105. |
[2] | ZHU X,LIU Z,MING N.Perovskite oxide nanotubes:synthesis,structural characterization,properties and applications.J.Mater Chem.,2010,20:4015-4030. |
[3] | MAO Y,BANERJEE S,WONG S S.Hydrothermal synthesis of perovskite nanotubes.Chem.Commun.,2003,3:408-409. |
[4] | RESTA R,POSTERNAK M,BALDERESCHI A.Towards a quantum theory of polarization in ferroelectrics:The case of KNbO3.Phys.Rev.Lett.,1993,70:1010-1013. |
[5] | KRETSCHMER R,BINDER K.Surface effects on phase transitions in ferroelectrics and dipolar magnets.Phys.Rev.B,1979,20:1065-1076. |
[6] | ZHONG WEI-LIE,AI SHU-TAO,JIANG BIN.Two critical sizes of barium titanate and lead titanate.Journal of Inorganic Materials,2002,17(5):1009-1012. |
[7] | FONG D D,STEPHENSON G B,STREIFFER S K.Ferroelectricity in ultrathin perovskite films.Science,2004,304(5677):1650-1653. |
[8] | SAI N,KOLPAK A M,RAPPE A M.Ferroelectricity in ultrathin perovskite films.Phys.Rev.B,2005,72(2):020101(R)-1-4. |
[9] | UMENO Y,SHIMADA T,KITAMURA T,et al.Ab initio density functional theory study of strain effects on ferroelectricity at PbTiO3 surfaces.Phys.Rev.B,2006,74(17):174111-1-9. |
[10] | JUNQUERA J,GHOSEZ P.Critical thickness for ferroelectricity in perovskite ultrathin films.Nature,2003,422:506-509. |
[11] | BURCSU E,RAVICHANDRAN G,BHATTACHARYA K.Large strain electrostrictive actuation in barium titanate.Appl.Phys.Lett.,2000,77(11):1698-1700. |
[12] | SHIMADA T,WANG X,TOMODA S,et al.Coexistence of rectilinear and vortex polarizations at twist boundaries in ferroelectric PbTiO3 from first principles.Phys.Rev.B,2011,83(9):094121-1-9. |
[13] | CEPERLEY D M,ALDER B J.Ground state of the electron gas by a stochastic method.Phys.Rev.Lett.,1980,45(7):566-569. |
[14] | SHIMADA T,ISHII Y,KITAMURA T.Ab initio study of ferromagnetic single-wall nickel nanotubes.Phys.Rev.B,2011,84(16):165452-1-6. |
[15] | FERRARI A M,SZIBERTH D,NOEL Y.DFT modeling of anatase nanotubes.J.Mate.Chem.,2011,21:4568-4580. |
[16] | SENGER R T,DAG S,CIRACI S.Chiral single-wall gold nanotubes.Phys.Rev.Lett.,2004,93(19):196807-1-4. |
[17] | ZHONG W,KING-SMITH R D,VANDERBILT D.Giant LO-TO splittings in perovskite ferroeletrics.Phys.Rev.Lett.,1994,72(22):3618-3621. |
[18] | M(U)NCH I,HUBER E.A hexadomain vortex in tetragonal ferroelectrics.Appl.Phys.Lett.,2009,95(2):022913-1-3. |
[19] | SCHILLING A,BYRNE D,GATALAN G,et al.Domains in ferroelectric nanodots.Nano Letters,2009,9(9):3359-3364. |
[20] | BOUSQUET E,DAWBER M,STUCKI N,et al.Improper ferroelectricity in perovskite oxide artificial superlattices.Nature,2008,452:732-736. |
[21] | COHEN R E.Origin of ferroelectricity in perovskite oxides.Nature,1992,358:136-138. |
[22] | KUROIWA Y,AOYAGI S,SAWADA A,et al.Evidence for Pb-O covalency in tetragonal PbTiO3.Phys.Rev.Lett.,2001,87(21):217601-1-4. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%