欢迎登录材料期刊网

材料期刊网

高级检索

采用聚合物热解化学气相沉积(PP-CVD)法,通过聚乙二醇(PEG)的原位热解提供碳源、柠檬酸(CA)和硝酸钴反应产生催化剂纳米粒子,在微纳米级的片状铝粉基底上原位生长碳纳米管(CNTs)。通过实验和反应动力学建模研究了PP-CVD反应机理,揭示了PEG热解气相成分和催化剂纳米粒子表面气-固反应对CNTs生长速率的影响规律。CO初始分压和反应温度提高, CNTs生长速率提高;H2初始分压和催化剂密度提高, CNTs生长速率降低。模型预测的CNTs平均长度随反应温度和反应时间的变化趋势符合实验结果。因此,本研究为进一步优化CNTs/铝复合粉末制备工艺提供了新的理论依据。

The method of polymer pyrolysis chemical vapor deposition (PP-CVD) was used to in situ grow carbon nanotubes (CNTs) on the micro and nano sized flake like aluminum powder substrates. The vapor species were in situ produced by pyrolysis of polyethylene glycol (PEG) including the carbon sources, which was the main difference between the PP-CVD and conventional CVD methods, while the catalyst nanoparticles were pro-duced by the reaction between citric acid (CA) and cobalt nitrate (Co(NO3)2) on aluminum powder surfaces. The reaction mechanism of PP-CVD was studied with the analysis of experiments and reaction kinetics mod-eling, revealing the influence of the vapor species produced by pyrolysis of PEG and CA and surface vapor-solid re-actions on catalyst nanoparticles on CNT growth rates. The CNTs growth rates increases with the increase of reaction temperature and initial partial pressure of CO, which is influenced by the content of PEG and CA, and decreases with the increase of catalyst density and initial partial pressure of H2. The variation trends of the simulated CNTs average length with reaction temperature and time are consistent with the experimental results. Thus, this work provides new theoretical basis to the further optimization of fabricating CNTs/aluminum composite powders.

参考文献

[1] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381:678-680.
[2] ESAWI A M K, MORSI K, SAYED A, et al. Effect of carbon nanotube(CNT)content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology, 2010, 70(16):2237-2241.
[3] GEORGE R, KASHYAP K T, RAHUL R, et al. Strengthening in carbon nanotube/aluminium(CNT/Al)composites. Scripta Mate-rialia, 2005, 53(10):1159-1163.
[4] JIANG L, LI Z, FAN G, et al. The use of flake powder metallurgy to produce carbon nanotube(CNT)/aluminum composites with a homogenous CNT distribution. Carbon, 2012, 50(5):1993-1998.
[5] DENG C, ZHANG X X, WANG D, et al. Preparation and charac-terization of carbon nanotubes/aluminum matrix composites. Ma-terials Letters, 2007, 61(8):1725-1728.
[6] BAKSHI S R, AGARWAL A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon, 2011, 49(2):533-544.
[7] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube rein-forced metal matrix composites:a review. International Materials Reviews, 2010, 55(1):41-64.
[8] WANG L, CHOI H, MYOUNG J M, et al. Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon, 2009, 47(15):3427-3433.
[9] POIRIER D, GAUVIN R, DREW R A L. Structural characteriza-tion of a mechanically milled carbon nanotube/aluminum mixture. Composites Part A:Applied Science and Manufacturing, 2009, 40(9):1482-1489.
[10] CHA S I, KIM K T, ARSHAD S N, et al. Extraordinary strength-ening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Advanced Materials, 2005, 17(11):1377-1381.
[11] HE C, ZHAO N, SHI C, et al. An approach to obtaining homoge-neously dispersed carbon nanotubes in al powders for preparing reinforced al-matrix composites. Advanced Materials, 2007, 19(8):1128-1132.
[12] CAO L, LI Z, FAN G, et al. The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene gly-col. Carbon, 2012, 50(3):1057-1062.
[13] TANG J, FAN G, LI Z, et al. Synthesis of carbon nanotube/aluminium composite powders by polymer pyrolysis chemical va-por deposition. Carbon, 2013, 55(1):202-208.
[14] GRUJICIC M, CAO G, GERSTEN B. Optimization of the chemi-cal vapor deposition process for carbon nanotubes fabrication. Ap-plied Surface Science, 2002, 191(1):223-239.
[15] GRUJICIC M, CAO G, GERSTEN B. An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nano-tubes. Materials Science and Engineering:B, 2002, 94(2):247-259.
[16] LOUCHEV O A, LAUDE T, SATO Y, et al. Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor depo-sition. Journal of Chemical Physics, 2003, 118(16):7622-7634.
[17] MA H, PAN L, NAKAYAMA Y. Modelling the growth of carbon nanotubes produced by chemical vapor deposition. Carbon, 2011, 49(3):854-861.
[18] CHEN D, L?DENG R, ANUNDSK?S A, et al. Deactivation dur-ing carbon dioxide reforming of methane over Ni catalyst:mi-crokinetic analysis. Chemical Engineering Science, 2001, 56(4):1371-1379.
[19] KEE R J, RUPLEY F M, MILLER J A, et al. Chemkin Release 4.1, Reaction Design, San Diego, CA(2006).
[20] CHASE M W. NIST-JANAF. Thermochemical Tables. 4th ed. Gaithersburg:ACS&AIP, 1998.
[21] COLTRIN M E, DANDY D S. Analysis of diamond growth in subatmospheric dc plasma-gun reactors. Journal of Applied Phys-ics, 1993, 74(9):5803-5820.
[22] FOGLER H. Elements of Chemical Reaction Engineering. 4th edn. New York:Prentice Hall, 2006.
[23] TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes:a review. Chem. Sus. Chem., 2011, 4(7):824-847.
[24] KUMAR M, ANDO Y. Chemical vapor deposition of carbon nano-tubes:a review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology, 2010, 10(6):3739-3758.
[25] LYSAGHT A C, CHIU W K S. Modeling of the carbon nanotube chemical vapor deposition process using methane and acetylene precursor gases. Nanotechnology, 2008, 19(16):165607.
[26] STORS?TER S, CHEN D, HOLMEN A. Microkinetic modelling of the formation of C1 and C2 products in the Fischer-Tropsch syn-thesis over cobalt catalysts. Surface Science, 2006, 600(10):2051-2063.
[27] ZADEH J S M, SMITH K J. Kinetics of CH4 decomposition on supported cobalt catalysts. Journal of Catalysis, 1998, 176:115-124.
[28] PURETZKY A A, GEOHEGAN D B, JESSE S, et al. In situ measurements and modeling of carbon nanotube array growth ki-netics during chemical vapor deposition. Applied Physics A, 2005, 81(2):223-240.
[29] YOKOYAMA H, NUMAKURA H, KOIWA M. The solubility and diffusion of carbon in palladium. Acta Materialia, 1998, 46(8):2823-2830.
[30] HUANG C W, LI Y Y. In situ synthesis of platelet graphite nano-fibers from thermal decomposition of poly(ethylene glycol). The Journal of Physical Chemistry B, 2006, 110(46):23242-23246.
[31] 宋玉强, 李世春, 杨泽亮. Al/Co 相界面的扩散溶解层. 焊接学报, 2008, 29(12):8-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%