欢迎登录材料期刊网

材料期刊网

高级检索

以静电纺丝技术制备的 TiO2纳米纤维为模板和反应物,采用水热法原位合成了具有异质结构的BaTiO3/TiO2复合纳米纤维。利用X射线衍射(XRD)、扫描电镜(SEM)和高分辨透射电镜(HRTEM)等分析测试手段对样品的结构和形貌进行表征。结果表明: BaTiO3纳米微粒均匀地生长在 TiO2纳米纤维表面,制备了异质结型BaTiO3/TiO2复合纳米纤维。材料的光催化性能利用罗丹明B和苯酚的脱色降解反应测试。BaTiO3/TiO2复合纳米纤维材料,在紫外光照射下,光催化降解活性较纯锐钛矿 TiO2纳米纤维有明显提高,罗丹明 B 和苯酚在该复合纳米纤维材料上的光催化降解反应遵循一级反应动力学。且易于分离、回收和再利用,循环使用5次,罗丹明B的脱色率仍保持在96%以上。

Heterostructured BaTiO3/TiO2 composite nanofibers were fabricated by in situ hydrothermal method us-ing TiO2 nanofibers as both template and reactant. The morphology and structure of BaTiO3/TiO2 composite nano-fibers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM). Photocatalytic activity was tested via rhodamine B and phenol degra-dation as the model reaction. The results showed that the as-fabricated sample was composed of BaTiO3 nanoparti-cles assembling uniformly on the surface of TiO2 nanofibers to form BaTiO3/TiO2 heterostructures. Compared with the pure TiO2 nanofibers, BaTiO3/TiO2 composite nanofibers exhibited enhanced photocatalytic activity in the de-composition of rhodamine B under UV illumination. The degradation of both RB and phenol followed first-order reaction kinetics, and the composite showed higher photoactivity than did the pure anatase TiO2.The composite nanofibers also showed good catalytic stability and the decolorizing efficiency of RB solution remained as high as 96%after 5 times recycle. Moreover, the catalyst was easily separated and removed from the system after reaction and reuse.

参考文献

[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358):37-38.
[2] CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspension. Bull Environ Contam Toxicol, 1976, 16(6):697-701.
[3] ZHOU WEN-QIAN, LU YU-MING, CHEN CHANG-ZHAO, et al. Effect of Li-doped TiO2 compact layers for dye sensitized solar cells. Journal of Inorganic Materials, 2011, 26(8):819-822.
[4] LANG L M, WU D, XU Z. Controllable fabrication of TiO2 1D-nano/micro structures:solid, hollow, and tube-in-tube fibers by electrospinning and the photocatalytic performance. Chem-Eur. J., 2012, 18(34):10661-10668.
[5] BEDFORD N M, PELAEZ M, HAN C, et al. Photocatalytic cellu-losic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR. J. Mater. Chem., 2012, 22(25):12666-12674.
[6] KITANO M, MATSUOKA M, UESHIMA M, et al. Recent devel-opments in titanium oxide-based photocatalysts. Appl. Catal. A:General, 2007, 325(1):1-14.
[7] ZHANG QING-HONG. Progress on TiO2-based nanomaterials and its utilization in the clean energy technology. Journal of Inorganic Materials, 2012, 27(1):1-10.
[8] HAGFELDT A, BOSCHLOO G, SUN L C, et al. Dye-sensitized solar cells. Chem. Rev., 2010, 110(11):6595-6663.
[9] CAO H M, ZHU Y H, YANG X L, et al. Fabrication of CuInS2-TiO2 composite fibers by using electrospinning coupled with sol-vothermal method. RSC Adv., 2012, 2(10):4055-4058.
[10] CHEN L, ZHANG S C, WANG L Q, et al. Photocqtalytic activity of Zr:SrTiO3 under UV illumination. J. Cryst. Growth, 2009, 311(3):735-737.
[11] CAO T P, LI Y J, SHAO C L, et al. Fabrication, structure, and en-hanced photocatalytic properties of hierarchical CeO2 nanostruc-tures/TiO2 nanofibers heterostructures. Materials Research Bulletin, 2010, 45(10):1406-1412.
[12] CAO T P, LI Y J, SHAO C L, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 2011, 27(6):2946-2952.
[13] CAO T P, LI Y J, SHAO C L, et al. Bi4Ti3O12nanosheets/TiO2 submicron fibers heterostructure:in site fabrication and high visi-ble lighttphotocatalytic activity. J. Mater. Chem., 2011, 21(19):6922-6927.
[14] LEE J C, KIM T G, CHOI H J.Enhanced photochemical response of TiO2/CdSe heterostructured nanowires.Cryst. Growth Des., 2007, 7(12):2588-2593.
[15] QIAN S S, WANG C S, LIU W J, et al. An enhanced CdS/TiO2 photocatalyst with high stability and activity:effect of mesoporous substrate and bifunctional linking molecule. J. Mater. Chem., 2011, 21(13):4945-4952
[16] CAO X B, LAN X M, GUO Y, et al. Preparation and characterization of bifunctional ZnO/ZnS nanoribbons decorated by gamma-Fe2O3 clusters. J. Phys. Chem. C, 2007, 111(51):18958-18964.
[17] MASUDA Y, IEDA S, KOUMOTO K. Site-selective deposition of anatase TiO2 in an aqueous solution using a seed layer. Langmuir, 2003, 19(10):4415-4419.
[18] YU H G, LEE S C, YU J G, et al. Photocatalytic activity of dis-persed TiO2 particles deposited on glass fibers. J. Mol. Cata. A, 2006, 246(1/2):206-211.
[19] KABALNOV ALEXEY. Ostwald ripening and related phenomena. J. Disper. Sci. Technol., 2001, 22(1):1-12.
[20] ZHAO BIN, LIN LIN, CHEN CHAO, et al. Research progress on crystal growth mechanism of titania/titanate nano-powder materi-als. Journal of Inorganic Materials, 2013, 28(7):683-690.
[21] OTSUKA-YAO-MATSUO S, UEDA M. Visible light-induced photobleaching of methylene blue aqueous solution using(Sr1-xLax)TiO3+δ-TiO2 composite powder.J. Photoch. Photobio. A:Chem., 2004, 168(1/2):1-6.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%