欢迎登录材料期刊网

材料期刊网

高级检索

通过真空熔融淬冷法制备了银复合的70GeS2-20In2S3-10CsI 硫系玻璃样品,利用 Z-扫描技术研究了玻璃样品在800 nm 处三阶非线性光学性质,发现引入 Ag 可提高其折射率 n 和非线性折射率γ, n 从2.204增加至2.4087,γ从23.3×10-18 m2/W增加到30.5×10-18 m2/W,此外非线性响应时间从70 fs增加到79 fs。热处理对玻璃的非线性光学性能的影响研究显示,热处理后样品的γ增加至44.3×10-18 m2/W,是As2Se3玻璃的两倍多。发现析晶后带隙变小(吸收边红移)导致非线性吸收系数β减小,使得样品的品质因子提高至3.3。Ag复合的硫系玻璃及玻璃陶瓷非线性折射率大、品质因子高、非线性响应快,有望用于全关开关等各类非线性光学器件中。

In this study, the Ag doped 70GeS2-20In2S3-10CsI chalcogenide glasses were synthesized by vac-uumed melting-quenching technique. The third nonlinear optical properties were studied using Z-Scan technique at 800 nm. After being introduced Ag into the glass, both the linear and nonlinear refraction index γ increased from 2.204 to 2.2087 and from 23.3×10-18 to 30.5×10-18 m2/W, respectively. Besides, the nonlinear response time increased from 70 fs to 79 fs. The further heat treatment also enhanced the nonlinear refraction index up to 44.3×10-18 m2/W, 2 folds higher than that of As2Se3. Meanwhile, the nonlinear absorption coefficientβdecreased because the bandgap decreased with the thermal heat treatment. However, the highest figure of merit (FOM) is 3.3, which is enough for the nonlinear optics. Large nonlinear refraction index, high FOM, and fast response time ensured that the Ag-composited chalcogenide glass and glass ceramics can find applications in nonlinear optics.

参考文献

[1] CHEN F F, XU T F, DAI S X, et al. Studies of two-photon ab-sorption in heavy metal oxide based glasses. Journal of Inor-ganic Materials, 2010, 25(3):289-292.
[2] ZHAO X L, LIANG X J, LUO H Y, et al. Third-order nonlinear optical properties of silver quantum dots doped in sodium borosilicate glass. Journal of Inorganic Materials, 2013, 28(9):1003-1008.
[3] YANG X Y, XIANG W D, ZHANG X Y, et al. Study on the third-order optical nonlinear absorption properties of Bi2O3 nanocrystals glass. Journal of Inorganic Materials, 2012, 27(3):317-322.
[4] LI Z B, LIN C G, NIE Q H, et al. Study on third-order optical nonlinearity of GeS2-Ga2S3-CsCl chalcohalide glasses. Acta Phys. Sin., 2012. 61(10):104207-1-7.
[5] FAN X Y, XU T F, SHEN X, et al. Study of optical properties of GeS2-Ga2S3-AgCl glasses. Journal of Inorganic Materials, 2010, 15(2):191-195.
[6] TAO H, MAO S, DONG G, et al. Raman scattering studies of the Ge-In sulfide glasses. Solid State Commun., 2006, 137(8):408-412.
[7] DONG G, TAO H, CHU S, et al. Study on the structure dependent ultrafast third-order optical nonlinearity of GeS2-In2S3 chalco-genide glasses. Opt. Commun., 2007, 270(2):373-378.
[8] MAO S, TAO H, ZHAO X, et al. Structure dependence of ultrafast third-order optical nonlinearity for GeS2-In2S3-CsI chalcohalide glasses. Solid State Commun., 2007, 142(8):453-456.
[9] GUIGNARD M, NAZABAL V, MOREAC A, et al. Optical and structural properties of new chalcohalide glasses. J. Non-Cryst. Solids, 2008, 354(12/13):1322-1326.
[10] WANG G, NIE Q, WANG X, et al. Research on optical band gap of the novel GeSe2-In2Se3-KI chalcohalide glasses. Spectrochim. Acta, Part A, 2010, 75(3):1125-1129.
[11] TAO H, MAO S, TONG W, et al. Formation and properties of the GeS2-In2S3-KCl new chalcohalide glassy system. Mater. Lett., 2006, 60(6):741-745.
[12] CHEN F, DAI S, XU T, et al. Surface-plasmon enhanced ultrafast third-order optical nonlinearities in ellipsoidal gold nanoparticles embedded bismuthate glasses. Chem. Phys. Lett., 2011, 514(1/2/3):79-82.
[13] SHEN X, CHEN F, LV X, et al. Preparation and third-order optical nonlinearity of glass ceramics based on GeS2-Ga2S3-CsCl pseudo-ternary system. J. Non-Cryst. Solids, 2011, 357(11/12/13):2316-2319.
[14] XU Y, YANG G, WANG W, et al. Formation and properties of the novel GeSe2-In2Se3-CsI chalcohalide glasses. J. Am. Ceram. Soc., 2008, 91(3):902-905.
[15] CHEN F, DAI S, XU T, et al. Redshifted surface plasma reso-nance-induced enhancement of third-order optical nonlinearities in silver nanoclusters embedded in Bi2O3-B2O3-TiO2 pseudo-ternary glasses. J. Opt. Soc. Am. B, 2011, 28(5):1283-1288.
[16] WATANABE Y, SAKATA S I, WATANABE T, et al. Two-photon absorption in binary Bi2O3-B2O3 glass at 532 nm. J. Non-Cryst. Solids, 1998, 240(1/2/3):212-220.
[17] YIN M, LI H P, TANG S H, et al. Determination of nonlinear ab-sorption and refraction by single Z-scan method. Appl. Phys. B, 2000, 70:587-591.
[18] GOPINATH J T, SOLJACIC M, IPPEN E P, et al. Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications. J. Appl. Phys., 2004, 96(11):6931-6933.
[19] QUéMARD C, SMEKTALA F, COUDERC V, et al. Chalcogenide glasses with high non linear optical properties for telecommunications. J. Phys. Chem. Solids, 2001, 62(8):1435-1440.
[20] MILAM D, WEBER M J. Measurement of nonlinear refrac-tive-index coefficients using time-resolved interferometry:applica-tion to optical materials for high-power neodymium lasers. J. Appl. Phys., 1976, 47(6):2497-2501.
[21] KANG I, SMOLORZ S, KRAUSS T, et al. Time-domain observa-tion of nuclear contributions to the optical nonlinearities of glasses. Phys. Rev. B, 1996, 54(18):R12641-R12644.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%