铜作为人体含量第二的必需微量元素,不仅在人体新陈代谢过程中起着重要作用,同时还具有抗菌性。因此,合成掺铜羟基磷灰石(Cu-HA)可望获得具有优良生物学性能兼具抗菌性能的生物陶瓷。本研究以硝酸钙、硝酸铜和磷酸氢二钠为原料,采用水热合成法制备掺铜HA。采用扫描电镜、透射电镜、X射线衍射、红外和原子吸收光谱对样品进行表征。结果表明:溶液体系中加入Cu2+后, Cu取代部分Ca进入HA晶格,使其形貌由带状转变为花瓣状微球;但Cu的掺入,并不影响HA晶体结构;当溶液中Cu/(Cu+Ca)摩尔比高于0.05时, HA产物的热稳定性下降。
As the second essential trace element in human body, copper plays vital roles in metabolism and antim-icrobial. Therefore, synthesis of copper-substituted hydroxyapatite (Cu-HA) is expected to create bioceramics with improved biological and antimicrobial properties. In this study, Cu-HA was prepared by hydrothermal reactions using Ca(NO3)2·4H2O, Cu(NO3)2·3H2O and Na2HPO4·12H2O. Products were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Fourier transform infrared spectroscope and atomic absorption spectrometry. Results show that copper is incorporated into the HA crystals. Correspondingly, the products retain HA structure but their morphologies transform from ribbons to flower-like microspheres. Moreover, when Cu/(Cu+Ca) (molar ratio) of the reaction solution is greater than 0.05, the thermal stability of the HA product is decreased.
参考文献
[1] | VALLET-REGí M, GONZáLEZ-CALBET J M. Calcium phos-phates as substitution of bone tissues. Progress in Solid State Chemistry, 2004, 32(1):1-31. |
[2] | FRAGA C G. Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 2005, 26(4):235-244. |
[3] | HU G. Copper stimulates proliferation of human endothelial cells under culture. Journal of Cellular Biochemistry, 1998, 69(3):326-335. |
[4] | RODRíGUEZ J P, RIOS S, GONZALEZ M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. Journal of Cellular Biochemistry, 2002, 85(1):92-100. |
[5] | STRAUSE L, SALTMAN P, GLOWACKI J. The effect of defi-ciencies of manganese and copper on osteoinduction and on re-sorption of bone particles in rats. Calcified Tissue International, 1987, 41(3):145-150. |
[6] | MEHTAR S, WIID I, TODOROV S D. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape:an in-vitro study. Journal of Hospital Infection, 2008, 68(1):45-51. |
[7] | STANI? V, DIMITRIJEVI? S, ANTI?-STANKOVI? J, et al.Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Applied Surface Science, 2010, 256(20):6083-6089. |
[8] | POGOSOVA M A, KAZIN P E, TRETYAKOV Y D. Synthesis and characterisation of copper doped Ca-Li hydroxyapatite. Nuclear Instruments and Methods in Physics Research Section B:Beam In-teractions with Materials and Atoms, 2012, 284:33-35. |
[9] | LI JI-DONG, LI YU-BAO, ZUO Yi, et al. Preparation and anti-bacterial properties valuation of copper-substituted nano-hydroxyapatite. Functional Materials, 2006, 37(4):635-638. |
[10] | LI Y, HO J, OOI C P. Antibacterial efficacy and cytotoxicity stud-ies of copper(II)and titanium(IV)substituted hydroxyapatite nanoparticles. Materials Science and Engineering:C, 2010, 30(8):1137-1144. |
[11] | LI J, LI Y, ZHANG L, et al. Composition of calcium deficient Na-containing carbonate hydroxyapatite modified with Cu(II)and Zn(II)ions. Applied Surface Science, 2008, 254(9):2844-2850. |
[12] | LIU J, YE X, WANG H, et al. The influence of pH and tempera-ture on the morphology of hydroxyapatite synthesized by hydro-thermal method. Ceramics international, 2003, 29(6):629-633. |
[13] | JOKI? B, MITRI? M, RADMILOVI? V, et al. Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceramics International, 2011, 37(1):167-173. |
[14] | JEMAL J, TOUNSI H, CHAARI K, et al. NO reduction with NH3 under oxidizing atmosphere on copper loaded hydroxyapatite. Ap-plied Catalysis B:Environmental, 2012, 113:255-260. |
[15] | CORAMI A, D’ACAPITO F, MIGNARDI S, et al. Removal of Cu from aqueous solutions by synthetic hydroxyapatite:EXAFS in-vestigation. Materials Science and Engineering:B, 2008, 149(2):209-213. |
[16] | GADALETA S J, PASCHALIS E P, CAMACHO N P, et al. Fou-rier Transform Infrared Spectroscopy of Synthetic and Bbiological Apatites. In:Amjad Z, editor. Mineral Scale Formation and Inhibi-tion. New York:Plenum Press, 1995:283-294. |
[17] | KLEE W E, ENGEL G. Infrared spectra of the phosphate ions in various apatites. Journal of Inorganic Nuclear Chemistry, 1970, 32(6):1837-1843. |
[18] | ?LóSARCZYK A, PASZKIEWICZ Z, PALUSZKIEWICZ C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure, 2005, 744:657-661. |
[19] | MEYER J L, FOWLER B O. Lattice defects in nonstoichiometric calcium hydroxylapatites:a chemical approach. Inorganic Chemis-try, 1982, 21(8):3029-3035. |
[20] | LAFON J P, CHAMPION E, BERNACHE-ASSOLLANT D. Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x (CO3)x(OH)2-x-2y(CO3)y, ceramics with controlled composition. Journal of the European Ceramic Society, 2008, 28(1):139-147. |
[21] | WENK H R, HEIDELBACH F. Crystal alignment of carbonated apatite in bone and calcified tendon:results from quantitative tex-ture analysis. Bone, 1999, 24(4):361-369. |
[22] | KAWASAKI T, NIIKURA M, KOBAYASHI Y. Fundamental study of hydroxyapatite high-performance liquid chromatography. III, Direct experimental confirmation of the existence of two types of absorbing surface on the hydroxyapatite crystal. Journal of Chro-matography A, 1990, 515:125-148. |
[23] | BARAVELLI S, BIGI A, RIPAMONTI A, et al. Thermal behavior of bone and synthetic hydroxyapatites submitted to magnesium in-teraction in aqueous medium. Journal of Inorganic Biochemistry, 1984, 20(1):1-12. |
[24] | LI Z Y, LAM W M, YANG C, et al. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials, 2007, 28(7):1452-1460. |
[25] | GALERA MARTíNEZ M, PHAM MINH D, Weiss-Hortala E, et al. Synthesis, characterization, and thermo-mechanical properties of copper-loaded apatitic calcium phosphates. Composite Inter-faces, 2013, 20(8):647-660. |
[26] | GINEBRA M P, FERNANDEZ E, DE MAEYER E A P, et al. Set-ting reaction and hardening of an apatitic calcium phosphate ce-ment. Journal of Dental Research, 1997, 76(4):905-912. |
[27] | NEIRA I S, KOLEN’KO Y V, LEBEDEV O I, et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Crystal Growth and Design, 2009, 9(1):466-474. |
[28] | LU X, WANG Y, WANG J, et al. Calcium phosphate crystal growth under controlled environment through urea hydrolysis. Journal of crystal growth, 2006, 297(2):396-402. |
[29] | WANG Y, HASSAN M S, GUNAWAN P, et al. Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure. Journal of Colloid and Interface Science, 2009, 339(1):69-77. |
[30] | HE Q J, HUANG Z L. Template-directed growth and characteriza-tion of flowerlike porous carbonated hydroxyapatite spheres. Crystal Research and Technology, 2007, 42(5):460-465. |
[31] | YANG L X, YIN J J, WANG L L, et al. Hydrothermal synthesis of hierarchical hydroxyapatite:preparation, growth mechanism and drug release property. Ceramics International, 2012, 38(1):495-502. |
[32] | MAYER I, CUISINIER F J G, GDALYA S, et al. TEM study of the morphology of Mn2+ doped calcium hydroxyapatite andβ-tricalcium phosphate. Journal of Inorganic Biochemistry, 2008, 102(2):311-317. |
[33] | BOANINI E, GAZZANO M, BIGI A. Ionic substitutions in cal-cium phosphates synthesized at low temperature. Acta biomateri-alia, 2010, 6(6):1882-1894. |
[34] | ZHANG Y, DAWE R A. Influence of Mg2+on the kinetics of cal-cite precipitation and calcite crystal morphology. Chemical Geol-ogy, 2000, 163(1):129-138. |
[35] | WANG F, GUO Y, WANG H, et al. Facile preparation of hydroxyapa-tite with a three dimensional architecture and potential application in water treatment. CrystEngComm, 2011, 13(19):5634-5637. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%