欢迎登录材料期刊网

材料期刊网

高级检索

以紫外光还原法将氧化石墨(GO)还原成石墨烯(GN),同时将磷钼酸(PMo12)修饰到石墨烯上,形成磷钼酸功能化的石墨烯 PMo12-GN,并以此为基底利用电化学还原法制备了 Pd/PMo12-GN 复合膜催化剂。运用 X 射线粉末衍射、X射线光电子能谱、扫描电镜、透射电镜等对复合膜的组成、结构、形态进行表征,结果表明:实验成功制备了Pd/PMo12-GN复合膜催化剂,且Pd颗粒均匀分散在PMo12-GN基底上。采用CV、计时电流法、CO溶出伏安法、交流阻抗法等电化学方法研究了Pd/PMo12-GN复合膜的电催化性能。研究结果表明:制备的复合膜催化剂对甲酸氧化反应的催化活性、催化稳定性、抗CO毒化能力和电子传递能力显著优于商品化的 Pd/C催化剂。Pd/PMo12-GN 复合膜电催化性能的提高主要是由于 Pd 纳米颗粒在 PMo12-GN 基底上均匀分散,以及PMo12的强氧化能力从而使钯表面一氧化碳等中间产物能迅速氧化去除。

The Pd/PMo12-GN composite film was prepared by electrochemical reduction, in which GN prepared from GO reduction under UV irradiation and simultaneously functional embellished by PMo12. The as-prepared composite was characterized by X-ray diffraction, X-ray photoelectron spectroscope, scanning electron microscope and transmis-sion electron microscope. It was shown that Pd/PMo12-GN composite was successfully prepared and Pd particles were uniformly-dispersed with a small particle size on the PMo12-GN substrate. Cyclic voltammetry, chronoamperometric curves, CO-stripping curves and EIS were used to discuss the electrocatalytic activities of the Pd/PMo12-GN composite film. The results indicated that the as-prepared composite film presented better electrocatalytic activity, stability, CO tolerance ability, and electric conductivity towards formic acid oxidation as compared with commercial Pd/C catalyst. The enhancement in electrochemical performance of the Pd/PMo12-GN composite film can be attributed to the syner-gistic effect of highly dispersed Pd nanoparticles on the PMo12-GN substrate and higher oxidation power of PMo12 which promotes the removal of the poisonous species on the Pd surface.

参考文献

[1] LOPEZ-CUDERO A, VIDAL-IGLESIAS F J, SOLLA-GULLON J, et al. Formic acid electrooxidation on Bi-modified polyoriented and preferential(111)Pt nanoparticles. Phys. Chem. Chem. Phys., 2009, 11:416-426.
[2] RICE C, HA S, MASEL R I, et al. Catalysts for direct formic acid fuel cells. J. Power Sources, 2003, 115(2):229-235.
[3] HAAN J L, STAFFORD K M, MASEL R I. Effects of the addition of antimony, tin, and lead to palladium catalyst formulations for the direct formic acid fuel cell. J. Phys. Chem. C, 2010, 114(26):11665-11672.
[4] YU X, PICKUP P G. Mechanistic study of the deactivation of car-bon supported Pd during formic acid oxidation. Electrochem. Com-mun., 2009, 11(10):2012-2014.
[5] YU X, PICKUP P G. Deactivation resistant PdSb/C catalysts for direct formic acid fuel cells. Electrochem. Commun., 2010, 12(6):800-803.
[6] LIU X, QIN D, FAN Y, et al. An alternative electrolyte based on ace-tylacetone-pyridine-iodine for dye-sensitized solar cells. Electro-chem. Commun., 2007, 9(7):1735-1738.
[7] FENG L, SUN X, LIU C, et al. Poisoning effect diminished on a novel PdHoOx/C catalyst for the electrooxidation of formic acid. Chem. Commun., 2012, 48(3):419-421.
[8] GEIM A K, NOVOSELOV K S. The rise of graphene. Nat. Mater., 2007, 6(3):183-191.
[9] GEIM A K. Graphene:status and prospects. Science, 2009, 324:1530-1534.
[10] GENG T F, LIN T, MIN Z, et al. One-pot, water-based and high-yield synthesis of tetrahedral palladium nanocrystal decorated graphene. Nanoscale, 2013, 5:8007-8014.
[11] HU C G, ZHAO Y, CHENG H H, et al. Ternary Pd2/PtFe networks supported by 3D graphene for efficient and durable electrooxida-tion of formic acid. Chem. Commun., 2012, 48(97):11865-11867.
[12] JIANG Y Y, LU Y Z, LI F H, et al. Facile electrochemical code-position of“clean”grapheme-Pd nanocomposite as an anode cata-lyst for formic acid electrooxidation. Electrochem. Commun., 2012, 19:21-24.
[13] YANG J, TIAN C G, WANG L, et al. In situ reduction, oxygen etching, and reduction using formic acid:an effective strategy for controllable growth of monodisperse palladium nanoparticles on graphene. Chem. Plus. Chem., 2012, 77(4):301-307.
[14] KOZHEVNIKOV I V. Catalysis by heteropoly acids and multi-component polyoxometalates in liquid-phase reactions. Chem. Rev., 1998, 98(1):171-198.
[15] WEINSTOCK I A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chem. Rev., 1998, 98(1):113-170.
[16] KIM W B, VOITL T, RODRIGUEZ-RIVERA G J, et al. Powering fuel cells with CO via aqueous polyoxometalates and gold cata-lysts. Science, 2004, 305(5688):1280-1283.
[17] KIM W B, VOITL T, RODRIGUEZ-RIVERA G J, et al. Preferen-tial oxidation of CO in H2 by aqueous polyoxometalates over metal catalysts. Angew. Chem. Int. Ed, 2005, 44(47):778-782.
[18] FERRELL III J R, KUO M C, TURNER J A, et al. The use of the heteropoly acids, H3PMo12O40 and H3PW12O40, for the enhanced electrochemical oxidation of methanol for direct methanol fuel cells. Electrochim. Acta, 2008, 53(14):4927-4933.
[19] ZENG Q O, CHENG J S, TANG L H, et al. Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv. Funct. Mater., 2010, 20(19):3366-3372.
[20] WILLIAM S HUMMERS JR, RICHARD E OFFEMAN. Prepara-tion of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6):1339.
[21] LI H L, PANG S P, FENG X L, et al. Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation. Chem. Commun., 2010, 46(34):6243-6245.
[22] SHEN YU-JIE, SHEN JUAN-ZHANG, LI HUAN-ZHI, et al. Ef-fect of electrolyte on electrocatalytic performance of carbon sup-ported Pd CATALYST FOR FORMIC ACID OXIDation. Chinese Journal of Inorganic Chemistry, 2011, 27(7):1383-1387.
[23] BRUN M, BERTHET A, BERTOLINI J C.XPS, AES and Auger parameter of Pd and PdO. J. Electron. Spectrosc. Relat. Phenom., 1999, 104(1):55-60.
[24] XIAO L H, SUN K P, XU X L, et al. Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition-precipitation method. Catal. Commun., 2005, 6(12):796-801.
[25] JIN T, GUO S, ZUO J L, et al. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Nanoscale, 2013, 5:160-163.
[26] ZHAO X, ZHU J, LING L, et al. Enhanced electroactivity of Pd nanocrystals supported on H3PMo12O40/carbon for formic acid electrooxidation. J. Power Sources, 2012, 210:392-396.
[27] GUO X, GUO D J, WANG J S, et al. Using phosphomolybdic acid(H3PMo12O40)to efficiently enhance the electrocatalytic activity and CO-tolerance of platinum nanoparticles supported on multi-walled carbon nanotubes catalyst in acidic medium. J. Electroanal. Chem., 2010, 638(1):167-172.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%