欢迎登录材料期刊网

材料期刊网

高级检索

以 Si 粉、Al 粉和 Al2O3粉为原料压制成条样,在1650~1850 K 氮气和埋 Si3N4颗粒气氛下分别合成了β-SiAlON 晶须、带状和柱状晶,并系统研究了一维β-SiAlON 材料可控合成条件,进而结合热力学分析了一维β-SiAlON材料的生长机制。结果表明:以Si粉、Al粉和Al2O3为原料,在氮气(纯度99.9%)和埋Si3N4颗粒气氛下在1650~1850 K保温6 h,可以合成不同形貌的一维β-SiAlON材料。生长温度是一维β-SiAlON材料形貌控制的关键因素。生长温度为1650 K时,合成了β-SiAlON晶须,晶须直径200~400 nm,长径比100~1000;生长温度在1700~1800 K时,可以合成β-SiAlON带状晶体,厚度为200 nm,宽度为1~4μm,长宽比在10~20之间;生长温度升高至1800 K时,出现大量柱状晶体。结合晶须显微结构形貌和热力学分析,β-SiAlON晶须的生长机制为气-固(VS)生长机制。

β-SiAlON whiskers, belts and rods were prepared at 1650-1850 K in N2 atmosphere, respectively, by using Si, Al and Al2O3 powders as raw materials which were pressed into cuboid and burying in Si3N4 grains. The effects of growth conditions on the controllable synthesis of one-dimensionalβ-SiAlON preparation were investigated in detail, and their growth mechanisms were explored according to the thermodynamic calculations. The results showed that one-dimensional β-SiAlON could be controllably synthesized only by adjusting sintering temperatures. Specifically,β-SiAlON whiskers with 200-400 nm in diameter and 100-1000 in aspect ratio could be obtained at 1650 K. Increas-ing growth temperature from 1700 K to 1800 K,β-SiAlON belts with thickness of about 200 nm, width of 1-4μm and length-width ratio in the range of 10-20, were produced. Further increasing temperature to 1850 K,β-Sialon rods were synthesized accordingly. Vapor-solid (VS) growth mechanism was put forward to elucidate the growth of one-dimensionalβ-SiAlON based on their thermodynamic calculations and microstructures.

参考文献

[1] 李武主编. 无机晶须. 北京:化学工业出版社, 2005:1-33.
[2] DONG P L, WANG X D, ZHANG M, et al. Conductivity proper-ties ofβ-SiAlON ceramics. Science China Technological Sciences, 2012, 55(9):2409-2415.
[3] CHEN I W, ROSENFLANZ A. A tough SiAlON ceramic based onα-Si3N4 with a whisker-like microstructure. Nature, 1997, 389(6652):701-704.
[4] GUNN D A. A theoretical evaluation of the stability of sialon-bonded silicon carbide in the blast furnace environment. J. Eur. Ceram. Soc., 1993, 11(1):35-41.
[5] RLEY F L. Silicon nitride and related materials. J. Am. Ceram. Soc., 2000, 83(2):245-265.
[6] XIE R J, HINTZEN H T. Optical properties of(oxy)nitride mate-rials:a review. J. Am. Ceram. Soc., 2013, 96(3):665-687.
[7] CHUNG J H, RYU J H. Photoluminescence and LED application of b-SiAlON:Eu2+ green phosphor. Ceram. Int., 2012, 38(6):4601-4606.
[8] CHEN Z. Synthesis and characterisation of β-SiAlON whiskers prepared from the carbothermal reaction of silica fume anda-Al2O3. J. Mater. Sci., 1993, 28(22):6021-6025.
[9] LIU G H, CHEN K X, ZHOU H P, et al. Formation ofβ-SiAlON micropalings consisting of nanorods during combustion synthesis. Scripta Mater, 2006, 55(10):935-938.
[10] DICKON H L NG, TERESA L Y CHEUNG, KWONG F L, et al. Fabrication of single crystallineβ′-SiAlON nanowires. Mater. Lett., 2008, 62(8/9):1349-1352.
[11] YU J, UENO S, HIRAGUSHI K, et al. Synthesis of β-SiAlON whiskers from pyrophyllite. J. Ceram. Soc. Jpn., 1997, 105(1225):821-823.
[12] 董鹏莉. β-SiAlON及其复相材料制备与性能的基础研究. 北京:北京科技大学博士学位论文, 2008.
[13] LIU G H, CHEN K X, ZHOU H P, et al. Preparation of Y-SiAlON rod-like crystals and whiskers by combustion synthesis. Mater. Lett., 2005, 59(29/30):3955-3958.
[14] DONG P L, WANG X D, ZHANG M, et al. Thermodynamic study and syntheses ofβ-SiAlON ceramics. Sci. China Ser. E-Tech. Sci., 2009, 52(11):3122-3127.
[15] YUE CHANG-SHENG, GUO MING, ZHANG MEI, et al. Con-trollable synthesis of high-purityβ-SiAlON powder. Journal of In-organic Materials, 2009, 24(6):1163-1167.
[16] 岳昌盛, 彭犇, 郭敏, 等.β-SiAlON晶须的诱导合成和生长机制研究. 人工晶体学报, 2011, 40(5):287-293.
[17] 岳昌盛. SiAlON的可控合成、性能与工业化生产研究. 北京:北京科技大学博士学位论文, 2010.
[18] 梁英教, 车荫昌主编. 无机热力学数据手册. 沈阳:东北大学出版社, 1993.
[19] 甄强, 王福明, 李文超. 赛隆(SiAlON)体系热力学性质评估与预报. 稀有金属, 1999, 23(4):254-257.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%