欢迎登录材料期刊网

材料期刊网

高级检索

以正丙醇锆、硼酸、醋酸和D-果糖为原料,采用溶胶-凝胶法,结合高温碳热还原反应制备得到了长柱状单相ZrB2粉末。反应体系中, D-果糖不仅提供碳热还原反应的碳源,同时作为化学修饰剂,起到抑制正丙醇锆快速水解的作用。通过对比未陈化和陈化的凝胶制备得到的产物,探讨了陈化过程对于ZrB2粉末制备的影响。结果表明,凝胶陈化有利于ZrO2向ZrB2的完全转化。当起始原料满足n(B)/n(Zr)=3.5~4, n(C)/n(Zr)=7时,采用室温陈化7 d的凝胶在1550℃保温2 h可获得长度为4~7μm,横截面等效直径约为1μm,长径比约为4~7,比表面积为2.53 m2/g, D50=6.46μm的单相长柱状ZrB2粉末。

ZrB2 particles were synthesized by a Sol-Gel method using zirconium n-propoxide, boric acid, acetic acid and D-fructose. D-Fructose acts as both a modifier and a carbon source for carbothermal reduction reaction. For com-parison, both nascent state gel and aged gel were used to clarify the aging-time-dependent mechanism for ZrB2 synthe-sis. As a result, a single phase ZrB2 powder with a uniform size and shape distribution can be obtained from the aged gel with a boron and carbon to zirconium molar ratio of 3.5-4 and 7, respectively, after reduced at 1550 ℃ for 2 h. Besides, the synthesized ZrB2 particles exhibit prism-like morphology with average particle size of ca. 4-7 μm in length, 1 μm in diameter of excircle of the cross-section and 4-7 in aspect ratio, when initial raw materials ratio n(B)/n(Zr) is 3.5-4 and n(C)/n(Zr) is 7. The median diameter D50 is 6.46μm and specific surface area is about 2.53 m2/g. Furthermore, a complete carbothermal reduction of ZrO2 can be achieved using the aged gel.

参考文献

[1] MORZ C. Annual mineral review:zirconium diboride. American Ceramic Society Bulletin, 1995, 73(6):141-142.
[2] FAHRENHOLTZ W G, HILMAS G E. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 2007, 90(5):1347-1364.
[3] UPADHYA K, YANG J M, HOFFMANN W P. Materials for ultra-high temperature structural applications. American Ceramic Soci-ety Bulletin, 1997, 76(12):51-56.
[4] QIU HUI-YU, GUO WEI-MING, ZOU JI, et al. ZrB2 powders prepared by boro/carbothermal reduction of ZrO2:the effects of carbon source and reaction atmosphere. Powder Technology, 2012, 217(3):462-466.
[5] CHEN LU-YANG, GU YUN-LE, YANG ZE-HENG, et al. Prepa-ration and some properties of nanocrystalline ZrB2 powders. Scripta Materialia, 2004, 50(7):959-961.
[6] GUO SHU-QI, HU CHUN-FENG, KAGAWA Y. Mechanochemi-cal processing of nanocrystalline zirconium diboride powder. Journal of the American Ceramic Society, 2011, 94(11):3643-3647.
[7] ?AMURLU H E, MAGLIA F. Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. Journal of the European Ceramic Society, 2009, 29(8):1501-1506.
[8] BA?A?, STELZER N. Adapting of Sol-Gel process for prepara-tion of TiB2 powder from low-cost precursors. Journal of the European Ceramic Society, 2008, 28(5):907-911.
[9] YAN YONG-JIE, HUANG ZHENG-REN, LIU XUE-JIAN. Car-bothermal synthesis of ultra-fine zirconium carbide powders using inorganic precursors via Sol-Gel method. Journal of Sol-Gel Sci-ence and Technology, 2007, 44(1):81-85.
[10] LI JIN-WANG, TIAN JIE-MO, DONG LI-MIN. Synthesis of SiC precursors by a two-step Sol-Gel process and their conversion to SiC powders. Journal of the European Ceramic Society, 2000, 20(11):1853-1857.
[11] XIE YAN-LI, SANDERS JR. T H, SPEYER R F. Solution-based synthesis of submicrometer ZrB2 and ZrB2-TaB2. Journal of the American Ceramic Society, 2008, 91(5):1469-1474.
[12] YAN YONG-JIE, HUANG ZHENG-REN, DONG SHAO-MING, et al. New route to synthesize ultra-fine zirconium diboride pow-ders using inorganic-organic hybrid precursors. Journal of the American Ceramic Society, 2006, 89(11):3585-3588.
[13] LI YUN-TAO, TAO XUE-YU, QIU WEN-FENG, et al. Prepara-tion of powdered zirconium diboride by a solution precursor con-vention method. Journal of Beijing University of Chemical Tech-nology(Natural Science), 2010, 37(4):78-82.
[14] LI RUI-XING, ZHANG YUN, LOU HAI-JIE, et al. Synthesis of ZrB2 nanoparticles by Sol-Gel method. Journal of Sol-Gel Science and Technology, 2011, 58(2):580-585.
[15] LI RUI-XING, LOU HAI-JIE, YIN SHU, et al. Nanocarbon-de-pendent synthesis of ZrB2 in a binary ZrO2 and boron system. Journal of Alloys and Compounds, 2011, 509(34):8581-8583.
[16] ZHANG YUN, LI RUI-XING, JIANG YAN-SHAN, et al. Morphol-ogy evolution of ZrB2 nanoparticles synthesized by Sol-Gel method. Journal of Solid State Chemistry, 2011, 184(8):2047-2052.
[17] YI GUANG-HUA, SAYER M. An acetic acid/water based Sol-Gel PZT process I:modification of Zr and Ti alkoxides with acetic acid. Journal of Sol-Gel Science and Technology, 1996, 6(1):65-74.
[18] DOLLé M, GOSSET D, BOGICEVIC C, et al. Synthesis of nanosized zirconium carbide by a Sol-Gel route. Journal of the European Ceramic Society, 2007, 27(4):2061-2067.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%