欢迎登录材料期刊网

材料期刊网

高级检索

研究了自组装TiO_2纳米管(TNAs)光电催化降解葡萄糖的动力学和机理.利用薄层反应器进行耗竭反应,研究了TNAs表面催化反应和溶液本体-扩散层传质有关的葡萄糖降解过程.采用电流-时间曲线以及相应的微分曲线分析了光电化学催化降解的微观进程.结果表明,葡萄糖的初始浓度与降解的起始电流强度符合Langmuir吸附等温式I_(0ph)=0.00008c_0/(1+0.69274c_0)+0.00034,葡萄糖在TNAs薄膜催化剂表面的吸附为单一分子层吸附,其光电催化降解反应符合一级反应动力学,葡萄糖降解反应经历了三个不同的反应过程.

The kinetics and mechanisms of photoelectrochemical catalytic degradation of glucose on self-organized TiO_2 nanotube arrays (TNAs) were investigated. A thin-layer cell was used to obtain an exhausted reaction condition with which an overall degradation process of glucose could be identified including surface reaction on TNAs and mass transfer from body solution to the diffuse layer. Current-time (I_(ph)-t) and the corresponding differential coefficient profiles were used to analyze the micro-processes of photoelectrochemical catalytic degrada-tion. The initially generated photocurrents on glucose degradation versus glucose concentrations fits well with Langmuir adsorption iso-therm, I_(0ph) = 0.00008c_0/(1 +0.69274c_0)+0.00034. This confirmed the adsorption of glucose on TNAs film catalyst was a single molecule layer adsorption, and the photoelectrochemical catalytic degradation reaction kinetics on TNAs surface belonged to a first-order reaction. After the initial quick reaction, three consecutive micro kinetic processes were revealed by the differential coefficient profiles (dI_(ph)/dt-t) of the glucose degradation profiles (I_(ph)-t).

参考文献

[1] Fujishima A;Honda K .[J].Nature,1972,238:37.
[2] Park J H;Kim S;Bard A J .[J].Nano Letters,2006,6:24.
[3] Beranek R;Kisch H .Surface-modified anodic TiO2 films for visible light photocurrent response[J].Electrochemistry communications,2007(4):761-766.
[4] Wang YM;Du GJ;Liu H;Liu D;Qin SB;Wang N;Hu CG;Tao XT;Jiao J;Wang JY .Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications[J].Advanced functional materials,2008(7):1131-1137.
[5] O'Regan B;Gratzel M .[J].Nature,1991,353:737.
[6] Gong D W;Grimes C A;Varghese O K;Chen Z Hn W C Dickey E C .[J].Journal of Materials Research,2001,16:3331.
[7] Liu Zh Y;Zhang X T;Nishimoto S;Jin M Tryk D A Murakami T Fujishima A .[J].Journal of Physical Chemistry C,2008,112:253.
[8] Mor GK;Varghese OK;Paulose M;Shankar K;Grimes CA .A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2006(14):2011-2075.
[9] Grimes C A .[J].Journal of Materials Chemistry,2007,17:1451.
[10] Quan X;Yang SG;Ruan XL;Zhao HM .Preparation of titania nanotubes and their environmental applications as electrode[J].Environmental Science & Technology: ES&T,2005(10):3770-3775.
[11] Paulose M;Shankar K;Yoriya S;Prakasam H E Varghese O K Mor G K Latempa T A Fitzgerald A Grimes C A .[J].Journal of Physical Chemistry B,2006,110:16179.
[12] Liu Y B;Zhou B X;Xiong B T;Bai J Li L H .[J].Chinese Science Bulletin,2007,52:1585.
[13] Zheng, Q;Zhou, BX;Bai, J;Li, LH;Jin, ZJ;Zhang, JL;Li, JH;Liu, YB;Cai, WM;Zhu, XY .Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J].Advanced Materials,2008(5):1044-1049.
[14] Zhang J L;Zhou B X;Zheng Q;Bai J Li J H Liu Y B Cai W M .[J].Water Research,2009,43:1986.
[15] Bai J;Zhou BX;Li LH;Liu YB;Zheng Q;Shao JH;Zhu XY;Cai WM;Liao JS;Zou LX .The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte[J].Journal of Materials Science,2008(6):1880-1884.
[16] Jin Z J;Li L H;Zheng Q;Bai J Zhou B X Cai W M .[J].Environmental Protect Chem Ind,2006,26:443.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%