欢迎登录材料期刊网

材料期刊网

高级检索

采用X射线衍射、热重、NH_3程序升温脱附、CO_2程序升温脱附等手段研究了Al_2_3,MgO,CaO和KNO_3改性MgO催化剂的结构和酸碱性质,并在固定床反应装置上考察了上述催化剂气相催化转化1,2-丙二醇反应性能.结果表明,催化剂表面的酸碱性对1,2-丙二醇气相转化反应的产物分布有显著影响.A1_2O_3催化剂上的产物以丙醛和丙酮为主;MgO催化剂上的主要产物为丙酮醇:CaO催化剂上丙酮和丙烯醇选择性相对较高;KNO_3改性MgO催化剂上环氧丙烷选择性显著升高.结合不同催化剂酸碱性质及其反应结果,提出了1,2-丙二醇气相转化的6个主要反应途径,明确了各反应途径与催化剂酸碱性质的关系.

The structure and surface acid-base properties of Al_2O_(3-), CaO-, MgO-, and KNO_(3-)modified MgO catalysts were characterized by X-ray diffraction, thermogravimetry, NH_3 temperature-programmed desorption, and CO_2 temperature-programmed desorption. The catalysts were applied to catalyze the gas-phase transformation of propylene glycol in a fixed-bed reactor. The results indicated that the catalytic performance of these catalysts significantly depended on the surface acid-base properties. Main products detected were propionaldehyde and acetone on Al_2O_3, acetol on MgO, and acetone and allyl alcohol on CaO. However, the MgO catalyst modified with KNO_3 remarkably enhanced the selectivity for propylene oxide. A six-pathway reaction mechanism was proposed to describe the catalytic transformation of propylene glycol based on the acid-base properties and the reaction results of the catalysts.

参考文献

[1] Perrard A;Gallezot P;Joly JP;Durand R;Baljou U;Coq B;Trens P .Highly efficient metal catalysts supported on activated carbon cloths: A catalytic application for the hydrogenation of D-glucose to D-sorbitol[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2007(0):100-104.
[2] Acosta D;Ramirez N;Erdmann E;Destefanis H Gonzo E .[J].Catalysis Today,2008,133-135:49.
[3] Fukuoka A;Dhepe P L .[J].Angewandte Chemie International Edition,2006,45:5161.
[4] Behr A;Eilting J;Irawadi K;Leschinski J;Lindner F .Improved utilisation of renewable resources: New important derivatives of glycerol[J].Green chemistry,2008(1):13-30.
[5] Ritter S K .[J].Chemical and Engineering News,2004,82:31.
[6] Chiu C W;Dasari M A;Sutterlin W R;Suppes G J .[J].Industrial and Engineering Chemistry Research,2006,45:791.
[7] Yin A Y;Guo X Y;Dai W L;Fan K N .[J].Green Chemistry,2009,11:1514.
[8] Balaraju M;Rekha V;Sai Prasad P S;Devi B L A P,Prasad R B N Lingaiah N .[J].Applied Catalysis A:General,2009,354:82.
[9] D'Hondt E;de Vyver SV;Sels BF;Jacobs PA .Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen[J].Chemical communications,2008(45):6011-6012.
[10] Wang, S;Liu, HC .Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts[J].Catalysis Letters,2007(1/2):62-67.
[11] Furikado I;Miyazawa T;Koso S;Shimao A Kunimori K Tomishige K .[J].Green Chemistry,2007,9:582.
[12] Miyazawa T;Koso S;Kunimori K;Tomishige K .Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2007(0):30-35.
[13] Tullo A H;Short P L .[J].Chemical and Engineering News,2006,84:22.
[14] Eissen M;Metzger J O;Schmidt E;Schneidewind U .[J].Angewandte Chemie International Edition,2002,41:414.
[15] Yu Z X;Xu L;Wei Y X;Wang Y L,He Y L,Xia Q H,Zhang X Z,Liu Z M.[J].Chemistry Communications,2009:3934.
[16] Best R D;Collier J A;Keen B T;Robson J H .[P].US 4982 021,1991.
[17] Bassler P;Goebbel H G;Teies J H;Rudolf P .[P].US 7084 310,2006.
[18] Dubnikova F;Lifshitz A .[J].Journal of Physical Chemistry A,2000,104:4489.
[19] Faraj M K .[P].US 5455 215,1995.
[20] Fouquet G;Merger F;Baer K .[P].DE 2709 440,1995.
[21] Zhu J H;Wang Y;Chun Y;Wang X S .[J].Journal of the Chemical Society,Faraday Transactions,1998,94:1163.
[22] Boumaza, A;Favaro, L;Ledion, J;Sattonnay, G;Brubach, JB;Berthet, P;Huntz, AM;Roy, P;Tetot, R .Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study[J].Journal of Solid State Chemistry,2009(5):1171-1176.
[23] Albuquerque M C G;Azevedo D C S;Cavalcante C L Jr;Santamaria-Gonzalez J Merida-Robles J M Moreno-Tost R Rodriguez-Castellon E Jimenez-Lopez A Maireles-Torres P .[J].Journal of Molecular Catalysis A:Chemical,2009,300:19.
[24] 孟明,林培琰,伏义路.不同焙烧气氛对氧化镁表面碱性的影响[J].催化学报,2000(03):286-288.
[25] 孙林兵,吴正颖,寇佳慧,淳远,王英,朱建华,邹志刚.负载型KNO3固体碱对环戊二烯甲基化反应的催化作用[J].催化学报,2006(08):725-731.
[26] Berteau P;Delmon B .[J].Catalysis Today,1989,5:121.
[27] Lewandowski M;Sarbak Z .[J].Fuel,2000,79:487.
[28] Fujita S I;Bhanage B M;Kanamaru H;Arai M .[J].Journal of Molecular Catalysis A:Chemical,2005,230:43.
[29] Zhang W;Wang H;Wei W;Sun Y .[J].Journal of Molecular Catalysis A:Chemical,2005,231:83.
[30] 朱建华;王英;淳远;胡玉海 .[J].化学物理学报,1998,11:178.
[31] Bucsi I.;Bartok M.;Olah GA.;Molnar A. .TRANSFORMATION OF 1,3-, 1,4- AND 1,5-DIOLS OVER PERFLUORINATED RESINSULFONIC ACIDS (NAFION-H)[J].Tetrahedron,1995(11):3319-3326.
[32] Torok B;Bucsi I;Beregszaszi T;Kapocsi I Molnar A .[J].Journal of Molecular Catalysis A:Chemical,1996,107:305.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%