欢迎登录材料期刊网

材料期刊网

高级检索

在流化床反应条件下进行了SAPO-34催化的甲醇转化的程序升温反应,并分析了不同反应温度阶段的积碳产物.结合对反应流出物的检测结果和热分析及色质联用分析确定的积碳物种变化,解释了程序升温反应过程中甲醇转化特殊的变化趋势.在程序升温甲醇转化的积碳产物中,除芳烃外,还有一种饱和的多环烷烃积碳物种,它的生成影响了烃池活性中心的形成并引起甲醇转化在低温反应阶段的失活.甲基取代苯和甲基取代金刚烷是低温条件下SAPO-34催化的甲醇转化产生的主要积碳产物,它们在升温过程中会向甲基取代萘以及稠环芳烃转变.积碳物种的演变对应了甲醇转化在起始反应阶段(300~325℃)的反应活性升高和此后(325~350℃)的失活以及在更高温度阶段(350~400℃)活性的恢复.在反应性能评价和积碳分析基础上,首次提出了一种与金刚烷类积碳物种生成相关的低温甲醇转化的失活机理.

参考文献

[1] Chang C D;Silvestri A J .[J].Journal of Catalysis,1977,47:249.
[2] St(O)cker M .[J].Microporous and Mesoporous Materials,1999,29:3.
[3] Gerald O .[J].Chemical Engineering,2011,118(02):16.
[4] Liang J;Li H Y;Zhao S Q;Guo W G Wang R H Ying M L .[J].Applied Catalysis,1990,64:31.
[5] Guisnet M .[J].Journal of Molecular Catalysis A:Chemical,2002,182-183:367.
[6] Guisnet M;Costa L;Ribeiro F R .[J].Journal of Molecular Catalysis A:Chemical,2009,305:69.
[7] Dahl I M;Kolboe S .[J].Catalysis Letters,1993,20:329.
[8] Arstad B;Kolboe S .[J].Journal of the American Chemical Society,2001,123:8137.
[9] Song WG.;Nicholas JB.;Heneghan CS.;Haw JF. .Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J].Journal of the American Chemical Society,2000(43):10726-10727.
[10] Haw J F;Song W G;Marcus D M;Nicholas J B .[J].Accounts of Chemical Research,2003,36:317.
[11] Lesthaeghe D;Van Speybroeck V;Marin G B;Waroquier M .[J].Angewandte Chemie International Edition,2006,45:1714.
[12] Fu H.;Haw JF.;Song WG. .Polycyclic aromatics formation in HSAPO-34 during methanol-to-olefin catalysis: ex situ characterization after cryogenic grinding[J].Catalysis Letters,2001(1/2):89-94.
[13] Arstad B;Kolboe S .[J].Catalysis Letters,2001,71:209.
[14] Hereijgers, B.P.C.;Bleken, F.;Nilsen, M.H.;Svelle, S.;Lillerud, K.-P.;Bj?rgen, M.;Weckhuysen, B.M.;Olsbye, U. .Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts[J].Journal of Catalysis,2009(1):77-87.
[15] Wei YX;Zhang DZ;Liu ZM;Su BL .Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR[J].Journal of Catalysis,2006(1):46-57.
[16] Wei, YX;Zhang, DZ;Chang, FX;Xia, QH;Su, BL;Liu, ZM .Ultra-short contact time conversion of chloromethane to olefins over pre-coked SAPO-34: direct insight into the primary conversion with coke deposition[J].Chemical communications,2009(40):5999-6001.
[17] McCann D M;Lesthaeghe D;Kletnieks P W;Guenther D R Hayman M J Van Speybroeck V Waroquier M Haw J F .[J].Angewandte Chemie International Edition,2008,47:5179.
[18] Lesthaeghe D;De Sterck B;Van Speybroeck V;Marin G B Waroquier M .[J].Angewandte Chemie International Edition,2007,46:1311.
[19] Chu C T-W;Chang C D .[J].Journal of Catalysis,1984,86:297.
[20] Park T Y;Froment G F .[J].Industrial and Engineering Chemistry Research,2001,40:4187.
[21] Gayubo AG.;Aguayo AT.;Olazar M.;Vivanco R.;Bilbao J. .Kinetics of the irreversible deactivation of the HZSM-5 catalyst in the MTO process[J].Chemical Engineering Science,2003(23/24):5239-5249.
[22] Haw J F;Marcus D M .[J].Topics in Catalysis,2005,34:41.
[23] Lok B M;Messina C A;Patton R L;Gajek R T Cannan T R Flanigen E M .[P].US 4 440 871,1984.
[24] Dahl I M;Kolboe S .[J].Journal of Catalysis,1994,149:458.
[25] Yang C;Wang Z D;Hollebone B P;Peng X Fingas M Landriault M .[J].Environmental Forensics,2006,7:377.
[26] Olah G A;Farooq O .[J].Journal of Organic Chemistry,1986,51:5410.
[27] Dahl J E;Moldowan J M;Peters K E;Claypool G E Rooney M A Michael G E Mello M R Kohnen M L .[J].Nature,1999,399:54.
[28] Hemelsoet, K.;Nollet, A.;Van Speybroeck, V.;Waroquier, M. .Theoretical simulations elucidate the role of naphthalenic species during methanol conversion within H-SAPO-34[J].Chemistry: A European journal,2011(33):9083-9093.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%