欢迎登录材料期刊网

材料期刊网

高级检索

在不同CO分压下制备了ε-Fe2C,X″-Fe5C2和θ-Fe3C等系列单相碳化铁,经钝化处理后采用低温N2物理吸附、穆斯堡尔谱、激光拉曼光谱和程序升温脱附技术进行了详细的表征.结果发现,碳化气氛,尤其是碳化温度对所得碳化铁结晶度有所影响.碳化铁表面的积碳程度随碳化气氛中CO分压的升高而增高,而随碳化温度的升高呈抛物线形式增高;不同碳化条件下生成的碳化铁晶型和表面积碳的差异导致其织构性质及其吸附CO的能力不同,低温(200℃)碳化生成的Fe2C表面解离吸附CO的能力显著强于其他碳化铁;低碳气氛中生成的Fe3C上CO的解离脱附量最大;其他条件下生成的碳化铁因表面吸附活性位的破坏和大量沉积碳的生成使得解离吸附CO的能力较弱.

参考文献

[1] 相宏伟,唐宏青,李永旺.煤化工工艺技术评述与展望Ⅳ.煤间接液化技术[J].燃料化学学报,2001(04):289-298.
[2] Davis B H .[J].Industrial and Engineering Chemistry Research,2007,46:8938.
[3] Blanchard F;Reymond J P;Pommier B;Teichner S J .[J].Journal of Molecular Catalysis,1982,17:171.
[4] Li T Zh;Yang Y;Zhang Ch H;An X Wan H J Tao Zh Ch Xiang H W Li Y W Yi F Xu B F .[J].Fuel,2007,86:921.
[5] Kuivila C S;Stair P C;Butt J B .[J].Journal of Catalysis,1989,118:299.
[6] O'Brien R J;Xu L G;Spicer R L;Davis B H .[J].Energy and Fuels,1996,10:921.
[7] Shroff MD.;Coulter KE.;Kohler SD.;Harrington MS.;Jackson NB.;Sault AG.;Datye AK.;Kalakkad DS. .ACTIVATION OF PRECIPITATED IRON FISCHER-TROPSCH SYNTHESIS CATALYSTS[J].Journal of Catalysis,1995(2):185-207.
[8] Hayakawa H;Tanaka H;Fujimoto K .Studies on precipitated iron catalysts for Fischer-Tropsch synthesis[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2006(0):24-30.
[9] Riedel T;Schulz H;Schaub G;Jun K W Hwang J S Lee K W .[J].Topics in Catalysis,2003,26:41.
[10] Le Caer G;Dubois J M;Pijolat M;Perrichon V Bussiere P .[J].Journal of Physical Chemistry,1982,86:4799.
[11] Mansker L D;Jin Y M;Bukur D B;Datye A K .[J].Applied Catalysis A:General,1999,186:277.
[12] Pour A N;Shahri S M K;Zamani Y;Irani M Tehrani S .[J].Journal of Natural Gas Chemistry,2008,17:242.
[13] Butt J B .[J].Catalysis Letters,1990,7:61.
[14] Li S Z;Li A W;Krishnamoorthy S;Iglesia E .[J].Catalysis Letters,2001,77:197.
[15] 王维佳,李金林,罗明生.硅对铁基费-托合成催化剂的影响[J].催化学报,2007(10):925-930.
[16] Herranz T;Rojas S;Perez-Alonso F J;Ojeda M Terreros P Fierro J L G .[J].Journal of Catalysis,2006,243:199.
[17] Amelse J A;Butt J B;Schwartz L H .[J].Journal of Physical Chemistry,1978,82:558.
[18] Niemantsverdriet J W;Van der Kraan A M;Van Dijk W L;Van der Baan H S .[J].Journal of Physical Chemistry,1980,84:3363.
[19] Cohn E M;Hofer L J E .[J].Journal of the American Chemical Society,1950,72:4662.
[20] Matyi R J;Butt J B;Schwartz L H .[J].Journal of Catalysis,1985,91:185.
[21] Le Caer G;Dubois J M;Pijolat M;Perrichon V Bussiere P .[J].Journal of Physical Chemistry,1982,86:4799.
[22] Boellaard E;Van der Kraan A M;Geus J W .[J].Applied Catalysis A:General,1996,147:229.
[23] De Smit, E.;Cinquini, F.;Beale, A.M.;Safonova, O.V.;Van Beek, W.;Sautet, P.;Weckhuysen, B.M. .Stability and reactivity of ε-Χ-θ iron carbide catalyst phases in fischer-tropsch synthesis: Controlling μ_c[J].Journal of the American Chemical Society,2010(42):14928-14941.
[24] Bukur DB.;Rosynek MP.;Li CP.;Wang DJ.;Rao KRPM.;Huffman GP.;Okabe K. .ACTIVATION STUDIES WITH A PRECIPITATED IRON CATALYST FOR FISCHER-TROPSCH SYNTHESIS .1. CHARACTERIZATION STUDIES[J].Journal of Catalysis,1995(2):353-365.
[25] Li SZ.;Krishnamoorthy S.;Li AW.;Meitzner GD.;Iglesia E. .Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties[J].Journal of Catalysis,2002(2):202-217.
[26] Loaiza-Gil A;Fontal B;Rueda F;Mendialdua J Casanova R .[J].Applied Catalysis A:General,1999,177:193.
[27] Li S Z;Meitzner G D;Iglesia E .[J].Journal of Physical Chemistry B,2001,105:5743.
[28] Niemantsverdriet J W;Van der Kraan A M .[J].Journal of Catalysis,1981,72:385.
[29] Wang Ch L;Ma D;Bao X H .[J].Journal of Physical Chemistry C,2008,112:17596.
[30] 定明月 .[D].太原:中国科学院山西煤炭化学研究所,2007.
[31] Xu J;Bartholomew C H .[J].Journal of Physical Chemistry B,2005,109:2392.
[32] Eliason S A;Bartholomew C H .[J].Stud SurfSci Catal,1997,111:517.
[33] Matsumoto H;Bennett C O .[J].Journal of Catalysis,1978,53:331.
[34] Yoshida K .[J].Japanese Journal of Applied Physics,1981,20:823.
[35] Ueda K;Enatsu M .[J].SurfSciLett,1985,159:L421.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%