欢迎登录材料期刊网

材料期刊网

高级检索

采用等体积浸渍法制备了一系列不同 MnOx 含量的 MnOx/Ce0.7Zr0.2La0.1O2-Al2O3(Ce0.7Zr0.2La0.1O2/Al2O3质量比=1)催化剂,并用 X 射线衍射、低温 N2吸附-脱附、X 射线光电子能谱、O2程序升温脱附和 H2程序升温还原等手段对催化剂进行了表征,考察了催化剂催化柴油车排放碳烟颗粒物燃烧的反应性能.结果表明,催化剂表面吸附的活性氧物种和 MnOx 的低温区还原性能是决定催化剂活性的两大关键因素.当 MnOx 负载量为5%时,催化反应所需的活性氧减少,因而活性降低;但 MnOx负载量增至10%时,催化剂中 Mn 物种的可还原量提高,从而增加其活性;增至20%时, MnOx 与表面吸附氧物种的可还原量间达平衡最佳值,活性最佳,碳烟起燃温度比无催化剂时降低了179 oC;负载量达30%后,由于载体表面吸附氧物种数量的降低和还原峰温的上升使催化剂活性下降.

A series of MnOx/Ce0.7Zr0.2La0.1O2-Al2O3 supported catalysts with the Ce0.7Zr0.2La0.1O2:Al2O3 mass ratio of 1:1 and different MnOx loadings were prepared by the incipient wetness method. The catalysts were characterized by X-ray diffraction, low temperature N2 adsorp-tion-desorption, X-ray photoelectron spectroscopy, O2 temperature-programmed desorption, and H2 temperature-programmed reduction. The catalytic performance of these catalysts for the combustion of diesel soot was investigated. It is found that surface-adsorbed active oxygen species and low-temperature reducibility of MnOx are the determinants of catalytic activity. When the MnOx loading is 5%, the catalyst activ-ity decreases owing to the loss of active oxygen species, which are necessary for the catalytic combustion. When the MnOx loading is in-creased to 10%, the catalyst activity is dramatically increased because of the enhanced reducible manganese species. Interestingly, the opti-mal values for reducible manganese species and surface-adsorbed oxygen species can be achieved in the catalyst with 20% MnOx, and so the catalyst exhibits the best catalytic activity, giving a light-off temperature about 179 oC lower than that of the non-catalytic soot combustion. With a further addition of MnOx species up to 30%, its catalytic activity is deteriorated mainly due to the decrease in surface-trapped oxygen species and upper shift of the reduction temperature.

参考文献

[1] 于扬 .[J].岑况,2012,31:156.
[2] 杨春雪;阚海东;陈仁杰 .[J].环境与健康,2011,28:735.
[3] Saracco G;Russo N;Ambrogio M;Badini C Specchia V .[J].Catalysis Today,2000,60:33.
[4] 田柳青,叶代启.柴油车排气颗粒物的后处理技术[J].环境污染治理技术与设备,2003(10):74-77.
[5] 钟富兰,钟喻娇,肖益鸿,蔡国辉,郑勇,魏可镁.Pt/CeO2-ZrO2-La2O3柴油车尾气氧化催化剂活性及抗硫性能[J].催化学报,2011(09):1469-1476.
[6] Wu X D;Liu D X;Li K;Li J Weng D .[J].Catalysis Communications,2007,8:1274.
[7] Li Sh X;Kato R;Wang Q;Yamanaka T Takeguchi T Ueda W .[J].Applied Catalysis B:Environmental,2010,93:383.
[8] Oi-Uchisawa J;Obuchi A;Wang Sh D;Nanba T Ohi A .[J].Applied Catalysis B:Environmental,2003,43:117.
[9] Pfelfer M;van Stetten B;Kühn C;Staab R Ruwisch L M Kattwinkel P Geishoff J Lox E Kreuzer T .[P].US 7351382,2008.
[10] Voss K E;Hallstrom K;Kakwani R M;Sung S .[P].US 7673448,2010.
[11] Milt V G;Pissarello M L;Miro E E;Querini C A .[J].Applied Catalysis B:Environmental,2003,41:397.
[12] 单文娟,杨利花,马娜,杨佳丽.K/CeO2催化剂上碳黑催化燃烧性能及稳定性[J].催化学报,2012(06):970-976.
[13] Teraoka Y;Kanada K;Kagawa S .[J].Applied Catalysis B:Environmental,2001,34:73.
[14] 彭小圣,林赫,上官文峰,黄震.K和Cu部分取代对LaMnO3钙钛矿型催化剂同时去除Nox和碳烟的影响[J].催化学报,2006(09):767-771.
[15] Shan W J;Yang J L;Yang L H;Ma N .[J].Journal of Natural Gas Chemistry,2011,20:384.
[16] Liang Q;Wu X D;Weng D;Xu H B .[J].Catalysis Today,2008,139:113.
[17] 韦岳长,刘坚,赵震,姜桂元,段爱军,何洪,王新平.Co_(0.2)/Ce_(1-x)Zr_xO_2催化剂的制备、表征及其催化碳烟燃烧反应性能[J].催化学报,2010(03):283-288.
[18] Peng X Sh;Lin H;Shangguan W F;Huang Zh .[J].Catalysis Communications,2007,8:157.
[19] Zhang-Steenwinkel Y;Castricum H L;Beckers J;Eiser E Bliek A .[J].Journal of Catalysis,2004,221:523.
[20] Wu X D;Liu Sh;Lin F;Weng D .[J].Journal of Hazardous Materials,2010,181:722.
[21] Wu X D;Liu Sh;Weng D;Lin F Ran R .[J].Journal of Hazardous Materials,2011,187:283.
[22] He X K;Sun J L;Huan Y F;Hu J Yang D X .[J].Journal of Rare Earths,2010,28:59.
[23] Polvinen R;Vippola M;Valden M;Lepisto T;Suopanki A;Harkonen M .The effect of Pt-Rh synergism on the thermal stability of rhodium oxide on pure alumina and Ce-ZrO2-modified alumina-supported catalysts[J].Journal of Catalysis,2004(2):372-381.
[24] Zhang X Y;Long E Y;Li Y L;Guo J X Zhang L J Gong M Ch Wang M H Chen Y Q .[J].Journal of Natural Gas Chemistry,2009,18:139.
[25] 朱艺,王健礼,陈永东,廖传文,王世丹,龚茂初,陈耀强.Ce0.5+xZr0.4-xLa0.1O2-Al2O3催化剂催化燃烧柴油车碳烟[J].物理化学学报,2011(04):925-931.
[26] Kim Y J;Kwon H J;Nam I-S;Choung J W Kil J K Kim H-J Cha M-S Yeo G K .[J].Catalysis Today,2010,151:244.
[27] Wang J;Wen J;Shen M Q .[J].Journal of Physical Chemistry C,2008,112:5113.
[28] Zhu J;Zhang L L;Deng Y;Liu B Dong L H Gao F Sun K Q Dong L Chen Y .[J].Applied Catalysis B:Environmental,2010,96:449.
[29] Wu X D;Liu Sh A;Weng D A;Lin F .[J].Catalysis Communications,2011,12:345.
[30] Aneggi E;de Leitenburg C;Dolcetti G;Trovarelli A .[J].Catalysis Today,2006,114:40.
[31] Stanmore B R;Brilhac J F;Gilot P .[J].Carbon,2001,39:2247.
[32] Kapteijn F;Vanlangeveld A D;Moulijn J A;Andreini A;Vuurman M A Turek A M Jehng J M Wachs I E .[J].Journal of Catalysis,1994,150:94.
[33] Wang H R;Chen Y Q;Zhang Q L;Zhu Q Ch Gong M Ch Zhao M .[J].Journal of Natural Gas Chemistry,2009,18:211.
[34] Chen H Y;Sayari A;Adnot A;Larachi F .[J].Applied Catalysis B:Environmental,2001,32:195.
[35] Zhu L;Yu J J;Wang X Zh .[J].Journal of Hazardous Materials,2007,140:205.
[36] Fang, P;Luo, MF;Lu, JQ;Cen, SQ;Yan, XY;Wang, XX .Studies on the oxidation properties of nanopowder CeO2-based solid solution catalysts for model soot combustion[J].Thermochimica Acta,2008(1/2):45-50.
[37] Shi L M;Chu W;Qu F F;Hu J Y Li M M .[J].Journal of Rare Earths,2008,26:836.
[38] Li X Sh;Wang J L;Liao Ch W;Cao H Y Chen Y Q Gong M Ch .[J].Journal of Natural Gas Chemistry,2011,20:623.
[39] 赵建宏;宋成盈;王留成.催化剂结构与分子设计[M].北京:中国工人出版社,1998:36.
[40] Shimokawa H;Kusaba H;Einaga H;Teraoka Y .[J].Catalysis Today,2008,139:8.
[41] Fino D;Russo N;Saracco G;Specchia V .[J].Journal of Catalysis,2006,242:38.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%