在微生物燃料电池(MFC)中,以氧为电子受体具有很多优点,但氧阴极还原的反应动力学慢,会造成阴极电势的损失.因此,提高阴极对氧还原的电催化活性和降低催化剂的价格是MFC非生物阴极催化剂的研究重点之一.本文综述了近年来MFC中非生物阴极氧还原催化剂的研究进展.重点讨论了贵金属Pt、过渡金属大环化合物以及金属氧化物催化剂对氧还原的电催化活性.其中,非贵金属氧化物及过渡金属大环化合物催化剂具有良好的性能,而且价格低廉,有望成为MFC非生物阴极Pt基催化剂的替代催化剂.
参考文献
[1] | WANG Jiaquan,LI Chen,TAN Qian.Wastewater Treatment by Single-chamber Microbial Cell Using Lead Dioxide as the Cathode[J].Technol Water Treat,2009,35(9):84-86(in Chinese).汪家权,李晨,谭茜.二氧化铅阴极单室微生物燃料电池处理有机废水研究[J].水处理技术,2009,35(9):84-86. |
[2] | Kreysa G,Schenck K,Vuorilehto K.Bioelectrochemical Hydrogen Production[J].Irt J Hydrogen Energy,1994,19(8):673-676. |
[3] | LU Na,ZHOU Ben,DENG Lifang,et al.Starch Processing Wastewater Treatment Using a Continuous Microbial Fuel Cell with MnO2 Cathodic Catalyst[J].J Basic Sci Eng,2009,17 (supplement):65-73 (in Chinese).卢娜,周奔,邓丽芳,等.MnO2为阴极催化剂的微生物燃料电池处理淀粉废水研究[J].应用基础与工程科学学报,2009,17(增刊):65-73. |
[4] | Oh S,Min B,Logan B.Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells[J].Environ Sci Technol,2004,38(18):4900-4904. |
[5] | Logan BE,Regan J M.Electricity-producing Bacterial Communities in Microbial Fuel Cells[J].Trends Microbiol,2006,14(12):512-518. |
[6] | You S J,Zhao Q L,Zhang J N,et al.A Microbial Fuel Cells Using Permanganate as the Cathodic Electron Acceptor[J].J Power Sources,2006,162(2):1409-1415. |
[7] | Ticianelli E,Derouin C,Srinivasan S.Localization of Platinum in Low Catalyst Loading Electrdes to Attain High PowerDensities in SPE Fuel Cells[J].Electroanal Chem,1988,251 (2):275-295. |
[8] | Mahlon S,Gottesfeld S.High Performance Catalyzed Membranes of Ultra-low Pt Loading for Polymer Electrolyte Fuel Cells[J].Electrochem Soc,1992,139:L28-L30. |
[9] | Liu H,Logan B E.Electricity Generation Using an Air-cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane[J].Environ Sci Technol,2004,38 (14):4040-4046. |
[10] | Pham T H,Jang J K,Chang I S,et al.Improvement of Cathode Reaction of a Mediatorless Microbial Fuel Cell[J].J Microbiol Biotechnol,2004,14 (2):324-329. |
[11] | Logan B E,Murano C,Scott K,et al.Electricity Generation from Cysteine in a Microbial Fuel Cell[J].Water Res,2005,39(5):942-952. |
[12] | Park H I,Mushtaq U,Perello D,et al.Effective and Low-Cost Platinum Electrodes for Microbial Fuel Cells Deposited by Electron Beam Evaporation[J].Energy Fuels,2007,21 (5):2984-2990. |
[13] | Cheng S A,Liu H,Logan B E.Power Densities Using Different Cathode Catalysts(Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells[J].Environ Sci Technol,2006,40(1):364-369. |
[14] | Jasinski R.A New Fuel Cell Cathode Catalyst[J].Nature,1964,201:1212-1213. |
[15] | ZHAO Dongjiang,YIN Geping,WEI Jie.Non-platinum Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells[J].Progress Chem,2009,21 (12):2753-2759 (in Chinese).赵东江,尹鸽平,魏杰.聚合物膜燃料电池阴极非Pt催化剂[J].化学进展,2009,21(12):2753-2759. |
[16] | Schulenburg H,Hilgendorff M,Dorbandt I,et al.Oxygen Reduction at Carbon Supported Ruthenium-selenium Catalysts:Selenium as Promoter and Stabilizer of Catalytic Activity[J].J Power Sources,2006,155(1):47-51. |
[17] | Bogdanoff P,Henmann I,Hilgendorff M,et al.Probing Structural Effects of Pyrolysed CoTMPP-based Electrocatalysts for Oxygen Reduction via New Preparation Strategies[J].New Mater Electrochem Syst,2004,7(2):85-92. |
[18] | Zhao F,Hamisch F,Schr der U,et al.Application of Pyrolysed Iron(iI) Phthalocyanine and CoTMPP Based Oxygen Reduction Catalysts as Cathode Materials in Microbial Fuel Cells[J].Electrochem Commun,2005,7(12):1405-1410. |
[19] | Yu E H,Cheng S A,Scott K,et al.Microbial Fuel Cell Performance with Non-Pt Cathode Catalysts[J].J Power Sources,2007,171 (2):275-281. |
[20] | Yu E H,Cheng Shao an,Logan B E,et al.Electrochemical Reduction of Oxygen with Iron Phthalocyanine in Neutral Media[J].Appl Electrochem,2009,39(5):705-711. |
[21] | Chu D,Jiang R Z.Novel Electrocatalysts for Direct Methanol Fuel Cells[J].Solid State Ionics,2002,148(3/4):591-599. |
[22] | MA Jinfu,L1U Yan,LAI Junhua,et al.A Direct Borohydride Fuel Cell with FeCoPc2-catalysed Cathode[J].Electrochemistry,2009,15 (3):280-283 (in Chinese).马金福,刘艳,赖俊华,等.双核双金属酞菁(FeCoPc2)阴极催化直接硼氢化物燃料电池[J].电化学,2009,15(3):280-283. |
[23] | Morris J M,Jin S,Wang J,et al.Lead Dioxide as an Alternative Catalyst Toplatinumin Microbial Fuel Cells[J].Electrochem Commun,2007,9 (7):1730-1734. |
[24] | Clauwaert P,Van der Ha D,Boon N,et al.Open Air Biocathode Enables Effective Electricity Generation with Microbial Fuel Cells[J].Environ Sci Technol,2007,41(21):7564-7569. |
[25] | Roche I,Chainet E,Chatenet M,et al.Durability of Carbon-supported Manganese Oxide Nanoparticles for the Oxygen Reduction Reaction(ORR) in Alkaline Medium[J].Appl Electrochem,2008,38(9):1195-1201. |
[26] | Roche I,Scott K.Carbon-supported Manganese Oxide Nanoparticles as Electrocatalysts for Oxygen Reduction Reaction (orr) in Neutral Solution[J].Appl Electrochem,2009,39 (2):197-204. |
[27] | Zhang L X,Liu C S,Zhuang L,et al.Manganese Dioxide as an Alternative Cathodic Catalyst to Platinum in Microbial Fuel Cells[J].Biosens Bioelectron,2009,24(9):2825-2829. |
[28] | Liu X W,Sun X F,Huang Y X,et al.Nano-structured Manganese Oxide as a Cathodic Catalyst for Enhanced Oxygen Reduction in a Microbial Fuel Cell Fed with a Synthetic Wastewater[J].Water Res,2010,44(18):5298-5305. |
[29] | Li X,Hu B X,Suib S,et al.Manganese Dioxide as a New Cathode Catalyst in Microbial Fuel Cells[J].J Power Sources,2010,195 (9):2586-2591. |
[30] | Duteanu N,Erable B,Senthil Kuma M S,et al.Effect of Chemically Modified Vulcan XC-72R on the Performance of Airbreathing Cathode in a Single-chamber Microbial Fuel Cell[J].Bioresour Technol,2010,101 (14):5250-5255. |
[31] | Yuan Y,Zhou S G,Zhuang L.Polypyrrole/carbon Black Composite as a Novel Oxygen Reduction Catalyst for Microbial Fuel Cells[J].J Power Sources,2010,195 (11):3490-3493. |
[32] | Deng L,Zhou M,Liu C,et al.Development of High Performance of Co/Fe/N/CNT Nanocatalyst for Oxygen Reduction in Microbial Fuel Cells[J].Talanta,2010,81 (1/2):444-448. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%