欢迎登录材料期刊网

材料期刊网

高级检索

硼酸盐作为新一代锂离子电池电极材料,其具有摩尔质量小、资源丰富、环境友好和理论比容量高等优点.本文对LiFeBO3、LiMnBO3和LiCoBO3等硼酸盐正极材料以及Fe3BO6、FeBO3、Cr3BO6、Co2B2O5、Cu3B2O6和VBO3等硼酸盐负极材料的结构、制备方法、电化学性能的研究现状进行了综述,并对存在的主要问题提出了改进方法.

参考文献

[1] Padhi A K,Nanjundaswamy K S,Goodenough J B.Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J].J Electrochem Soc,1997,144 (4):1188-1193.
[2] Yamada A,Iwane N,Harada Y,et al.Lithium Iron Borates as High-Capacity Battery Electrodes[J].Adv Mater,2010,22(32):3583-3587.
[3] CHEN Ling.The Synthesis and Performance Study of Borates and Phosphate Compounds as Cathode Materials for Lithium Ion Batteries[D].Guangzhou:South China University of Technology,2011 (in Chinese).陈玲.硼酸盐和磷酸盐系锂离子电池正极材料的合成与性能研究[D].广州:华南理工大学,2011.
[4] Seo D H,Park Y U,Kim S W,et al.First-Principles Study on Lithium Metal Borate Cathodes for Lithium Rechargeable Batteries[J].Phys Rev B,2011,83(20):205127-1-8.
[5] Kim J C,Moore C J,Kang B,et al.Synthesis and Electrochemical Properties of Monoclinic LiMnBO3 as a Li Intercalation Material[J].J Electrochem Soc,2011,158 (3):A309-A315.
[6] Liu G Q,Wu Q Y,Ma B Y.Study of the Electrochemical Properties of H-LiMnBO3 Compound[J].Adv Mater Res,2011,197/198:526-530.
[7] Legagneur V,An Y,Mosbah A,et al.LiMBO3 (M =Mn,Fe,Co):Synthesis,Crystal Structure and Lithium Deinsertion/Insertion Properties[J].Solid State lonics,2001,139 (1/2):37-46.
[8] Allen J L,Xu K,Zhang S S,et al.LiMBO3 (M =Fe,Mn):Potential Cathode for Lithium Ion Batteries[J].Mat Res Soc Symp Proc,2002,730:9-14.
[9] Dong Y Z,Zhao Y M,Fu P,et al.Phase Relations of Li2O-FeO-B2O3 Ternary System and Electrochemical Properties of LiFeBO3 Compound[J].J Alloys Compd,2008,461(1/2):585-590.
[10] Dong Y Z,Zhao Y M,Shi Z D,et al.The Structure and Electrochemical Performances of LiFeBO3 as a Novel Li-Battery Cathode Material[J].Electrochim Acta,2008,53 (5):2339-2345.
[11] Isono M,Okada S,Yamaki J.Synthesis and Electrochemical Characterization of Amorphous Li-Fe-P-B-O Cathode Materials for Lithium Batteries[J].J Power Sources,2010,195(2):593-598.
[12] Chen L,Zhao Y M,An X N,et al.Structure and Electrochemical Properties of LiMnBO3 as a New Cathode Material for Lithium-Ion Batteries[J].J Alloys Compd,2010,494(1/2):415-419.
[13] HOU Xingmei,ZHAO Yanming,DONG Youzhong.Preparation and Characterization of New Cathode Material LiMnBO3 for Lithium Ion Battery[J].Chinese J Power Sources,2008,32(9):611-613(in Chinese).侯兴梅,赵彦明,董有忠.新型锂离子电池正极材料LiMnBO3的制备及其性能[J].电源技术,2008,32(9):611-613.
[14] Aravindan V,Karthikeyan K,Amaresh S,et al.A Potential Cathode Material for Lithium Batteries[J].Bull Korean Chem Soc,2010,31 (6):1506-1508.
[15] Abouimrane A,Armand M,Ravet N.Carbon Nano-Painting:Application to Non-Phosphate Oxyanions,e.g.Borates[C]//The 203rd International Symposium on New Trends in Intercalation Compounds for Energy Storage and Conversion.Paris:Electrochemical Society,2003:15-22.
[16] Yamada A,Iwane N,Nishimura S I,et al.Synthesis and Electrochemistry of Monoclinic Li(MnxFe1-x) BO3:a Combined Experimental and Computational Study[J].J Mater Chem,2011,21 (29):10690-10696.
[17] Martha S K,Grinblat J,Haik O,et al.LiMn0.8Fe0.2PO4:An Advanced Cathode Material for Rechargeable Lithium Batteries[J].Angew Chem Int Ed,2009,48(45):8559-8563.
[18] Ma J,Qin Q Z.Electrochemical Performance of Nanocrystalline LiMPO4 Thin-Films Prepared by Electrostatic Spray Deposition[J].J Power Sources,2005,148:66-71.
[19] Yamada A,Takei Y,Koizumi H,et al.Electrochemical,Magnetic,and Structural Investigation of the Lix(MnyFe1-y) PO4 Olivine Phases[J].Chem Mater,2006,18(3):804-813.
[20] Kokalj A,Dominko R,Mali G,et al.Beyond One-Electron Reaction in Li Cathode Materials:Designing Li2MnxFe1-xSiO4[J].Chem Mater,2007,19(15):3633-3640.
[21] Gong Z L,Li Y X,Yang Y.Synthesis and Characterization of Li2MnxFe1-xSiO4 as a Cathode Material for Lithium-Ion Batteries[J].Electrochem Solid State Lett,2006,9 (12):A542-A544.
[22] Koyama Y,Tanaka I,Iwane N,et al.Structure and Electrochemical Properties of LiMBO3 (M =Fe,Mn) by First Principles Calculations[C]//The 15th International Meeting on Lithium Batteries.Quebec:The Electrochemical Society,2010,Abstract#480.
[23] Seo D H,Park Y U,Kim S W,et al.First Principles Study on Lithium Metal Borate Cathodes for Li Rechargeable Battery[C]//219th ECS Meeting.Quebec:The Electrochemical Society,2011,Abstract #498.
[24] Lin Z P,Zhao Y J,Zhao Y M.First-Principles Study of the Structural,Magnetic,and Electronic Properties of LiMBO3 (M =Mn,Fe,Co)[J].Phys Lett A,2012,376(3):179-184.
[25] Iwane N,Harada Y,Nishimura S I,et al.Borates as High Capacity Cathodes[C]//The 15th International Meeting on Lithium Batteries.Quebec:The Electrochemical Society,2010,Abstract #650.
[26] Koyama Y,Tanaka I,Iwane N,et al.Electrochemical Properties of Lithium Iron Borate by First Principles Calculations[C]//216th ECS Meeting.Vienna:The Electrochemical Society,2009,Abstract #502.
[27] Chung S Y,Bloking J T,Chiang M.Electronically Conductive Phospho-olivines as Lithium Storage Electrodes[J].Nat Mater,2002,1(2):123-128.
[28] Huang H,Yin S C,Kerr T,et al.Nanostructured Composites:a High Capacity,Fast Rate Li3 V2 (PO4)3/Carbon Cathode for Rechargeable Lithium Batteries[J].Adv Mater,2004,14(21):1525-1528.
[29] Saidi M Y,Barker J,Huang H,et al.Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries[J].Electrochem Solid State Lett,2002,5(7):A149-A151.
[30] Tang A P,Wang X Y,Liu Z M.Electrochemical Behavior of Li3V2(PO4)3/C Composite Cathode Material for Lithium-Ion Batteries[J].Mater Lett,2008,62 (10/11):1646-1648.
[31] Ren M M,Zhou Z,Su L W,et al.LiVOPO4:A Cathode Material for 4 V Lithium Ion Batteries[J].J Power Sources,2009,189(1):786-789.
[32] Barker J,Saidi M Y,Swoyer J L.Electrochemical Properties of Beta-LiVOPO4 Prepared by Carbothermal Reduction[J].J Electrochem Soc,2004,151 (6):A796-A800.
[33] Ren M M,Zhou Z,Gao X P,et al.LiVOPO4 Hollow Microspheres:One-Pot Hydrothermal Synthesis with Reactants as Self-Sacrifice Templates and Lithium Intercalation Performances[J].J Phys Chem C,2008,112 (33):13043-13046.
[34] Kerr T A,Gaubicher J,Nazar L F.Highly Reversible Li Insertion at 4 V in ε-VOPO4/α-LiVOPO4 Cathodes[J].Electrochem Solid-State Lett,2000,3(10):460-462.
[35] Prakash A S,Rozier P,Dupont L,et al.Electrochemical Reactivity of Li2 VOSiO4 toward Li[J].Chem Mater,2006,18(2):407-412.
[36] Barker J,Saidi M Y,Swoyer J L.Lithium Iron (Ⅱ) Phosphoolivines Prepared by a Novel Carbothermal Reaction Method[J].Electrochem Solid-State Lett,2003,6 (3):A53-A55.
[37] Yamada A,Chung S C,Hinokuma K.Optimized LiFePO4 for Lithium Battery Cathodes[J].J Electrochem Soc,2001,148(3):A224-A229.
[38] Larsson P,Ahuja R,Nytén A,et al.An ab Initio Study of the Li-Ion Battery Cathode Material Li2FeSiO4[J].Electrochem Commun,2006,8 (5):797-800.
[39] Dominko R,Conte D E,Hanzel D,et al.Impact of Synthesis Conditions on the Structure and Performance of Li2FeSiO4[J].J Power Sources,2008,178 (2):842-847.
[40] Nytén A,Kamali S,Haggstr M L,et al.The Lithium Extraction/Insertion Mechanism in Li2FeSiO4[J].J Mater Chem,2006,16(23):2266-2272.
[41] Sébastien P,Cǎlin W,Mathieu M,et al.A Comparative Structural and Electrochemical Study of Monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3[J].J Power Sources,2003,119/121:278-284.
[42] Zhu S,Zhou H,Miyoshi T,et al.Self-Assembly of the Mesoporous Electrode Material Li3Fe2(PO4)3 Using a Cationic Surfactant as the Template[J].Adv Mater,2004,16(22):2012-2017.
[43] TANG Anping,XU Guorong,LING Yulin,et al.Electrochemical Performance of Novel LiVOBO3 as Cathode Materials in Lithium Ion Batteries[C]//The Sixteenth National Symposium on Electrochemistry.Chongqing:2011,B-125 (in Chinese).唐安平,徐国荣,令玉林,等.新型LiVOBO3锂离子电池正极材料的电化学性能[C]//第十六届全国电化学会议论文.重庆:2011,B-125.
[44] Rowsell J L C,Gaubicher J,Nazar L F.A New Class of Materials for Lithium-Ion Batteries:Iron(Ⅲ) Borates[J].J Power Sources,2001,97/98:254-257.
[45] Palos A I,Darie C,Proux O,et al.Electrochemical Reactions of Iron Borates with Lithium:Electrochemical and in Situ Mossbauer and X-ray Absorption Studies[J].Chem Mater,2002,14 (3):1166-1173.
[46] Okada S,Tonuma T,Uebo Y,et al.A node Properties of Calcite-Type MBO3 (M:V,Fe)[J].J Power Sources,2003,119/121:621-625.
[47] Palos A I,Morcrette M,Strobel P.Reversible Lithium Intercalation in Amorphous Iron Borate[J]J Solid State Electrochem,2002,6 (2):134-138.
[48] Rowsell J L C,Nazar L F.Synthesis,Structure,and Solid-State Electrochemical Properties of Cr3BO6:a New Chromium (Ⅲ) Borate with the Norbergite Structure[J].J Mater Chem,2001,11 (12):3228-3233.
[49] Kim D Y,Kwon H.Synthesis of Vanadium (Ⅲ) Borates/Carbon Composite Using Microwave Heating Process and Their Electrochemical Properties as Anode Material of Lithium Ion Battery[C]//210th ECS Meeting.Cancun:The Electrochemical Society,2006,Abstract #285.
[50] Rowsell J L C,Taylor N J,Nazar L F.Crystallographic Investigation of the Co-B-O System[J].J Solid State Chem,2003,174(1):189-197.
[51] Shi X X,Liu X J,Yuan L J.The Electrochemical Property of Cobalt Borate as a Novel Anode Material for Lithium-Ion Battery[J].Adv Mater Res,2011,236/238:876-879.
[52] ZHOU Xiangyang,HU Guorong,PENG Zhongdong,et al.Development of Carbon Negative Electrode Materials for Lithium Ion Batteries[J].Battery Bimonthly,2001,31 (3):146-149 (in Chinese).周向阳,胡国荣,彭忠东,等.锂离子电池碳负极材料的研究进展[J].电池,2001,31(3):146-149.
[53] Shi X X,Chang C X,Xiang J F,et al.Synthesis of Nanospherical Fe3BO6 Anode Material for Lithium-Ion Battery by the Rheological Phase Reaction Method[J].J Solid State Chem,2008,181 (9):2231-2236.
[54] Debart A,Revel B,Dupont L,et al.Study of the Reactivity Mechanism of M3B2O6(with M =Co,Ni,and Cu) toward Lithium[J].Chem Mater,2003,15(19):3683-3691.
[55] Grzegorz P,Daria M,Steffen O,et al.Study of the Conversion Reaction Mechanism for Copper Borate as Electrode Material in Lithium-Ion Batteries[J].J Electrochem Soc,2011,158 (8):A898-A904.
[56] LIU Ran,XUE Xiangxin,LIU Xin,et al.Progress on Chinese Boron Resource and the Current Situation of Boron-Bearing Materials[J].Bull Chinese Ceram Soc,2006,25(6):102-107(in Chinese).刘然,薛向欣,刘欣,等.我国硼资源加工工艺与硼材料应用进展[J].硅酸盐通报,2006,25(6):102-107.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%