欢迎登录材料期刊网

材料期刊网

高级检索

以壳聚糖和介孔碳氮材料共混所得复合物为固定漆酶的载体,将固酶复合物滴涂在裸玻碳电极表面并干燥后,得到固定漆酶基阴极.考察了此电极在不含底物的电解质溶液中的直接电化学行为,同时还研究了其对氧气还原反应的催化性能和电极的长期使用性、重现性和力学稳定性.在此基础上还考察了此电极作为氧气电化学传感器的性能.研究结果表明,介孔碳氮材料-壳聚糖固定漆酶修饰电极能在无任何电子中介体条件下,实现漆酶活性中心T1与电极之间的直接电子转移,而且能在较高的电位下实现氧气的电还原.此电极催化氧还原的起始电位约为860 mV,氧还原的半波电流密度约为78×10-6 A/cm2.这种漆酶基电极的重现性良好且具有优异的长期稳定性,但力学稳定性较差.此电极对氧的传感性能良好:检测限低达0.4 μmol/L,灵敏度高达(67.9×10-6A·L/mmol),具有良好的对氧亲和力(KM =764.0 μmol/L).

参考文献

[1] Ivanov I,Vidakovic-Koch T,Sundmacher K.Recent Advances in Enzymatic Fuel Cells:Experiments and Modelling[J].Energies,2010,3:803-846.
[2] Cracknell J A,Vincent K A,Armstrong F A.Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis[J].Chem Rev,2008,108:2439-2461.
[3] Shleev S,Christenson A,Serezhenkov V,et al.Electrochemical Redox Transformations of T1 and T2 Copper Sites in Native Trametes Hirsuta Laccase at Gold Electrode[J].Biochem J,2005,385:745-754.
[4] Willner I,Yan Y M,Willner B,et al.Integrated Enzyme-Based Biofuel Cells[J].Fuel Cells,2009,(1):7-24.
[5] Mano N,Kim H H,Zhang Y C,et al.An Oxygen Cathode Operating in a Physiological Solution[J].JAm Chem Soc,2002,124(22):6480-6486.
[6] Mano N,Mao F,Heller A.A Miniature Biofuel Cell Operating in a Physiological Buffer[J].J Am Chem Soc,2002,124:12962-12963.
[7] Osman M H,Shah A A,Walsh F C.Recent Progress and Continuing Challenges in Bio-fuel Cells:Part Ⅰ.Enzymatic Cells[J].Biosens Bioelectron,2011,26:3087-3102.
[8] Gallaway J W,Barton S A C.Kinetics of Redox Polymer-Mediated Enzyme Electrodes[J].J Am Chem Soc,2008,130:8527-8536.
[9] Fameth W E,Diner B A,Gierke T D,et al.Current Densities from Electroeatalytic Oxygen Reduction in Laccase/ABTS Solutions[J].J Electroanal Chem,2005,581:190-196.
[10] Tsujimura S,Tatsumi H,Ogawa J,et al.Bioelectrocatalytic Reduction of Dioxygen to Water at Neutral pH Using Bilirubin Oxidase as an Enzyme and 2,2'-Azinobis (3-ethylbenzothiazolin-6-sulfonate) as an Electron Transfer Mediator[J].J Electroanal Chem,2001,496:69-75.
[11] Blanford C F,Heath R S,Armstrong F A.A Stable Electrode for High-potential,Electrocatalytic O2 Reduction Based on Rational Attachment of a Blue Copper Oxidase to a Graphite Surface[J].Chem Commun,2007:1710-1712.
[12] Wen D,Xu X L,Dong S J.A Single-Walled Carbon Nanohom-Based Miniature Glucose/Air Biofuel Cell for Harvesting Energy from Soft Drinks[J].Energy Environ Sci,2011,4:1358-1363.
[13] Nazaruk E,Sadowska K,Madrak K,et al.Composite Bioelectrodes Based on Lipidic Cubic Phase with Carbon Nanotube Network[J].Electroanalysis,2009,21 (3/5):507-511.
[14] Liu Y,Qu X H,Guo H W,et al.Facile Preparation of Amperometric Laccase Biosensor with Multifunction Based on the Matrix of Carbon Nanotubes-Chitosan Composite[J].Biosens Bioelectron,2006,21:2195-2201.
[15] Zheng W,Zhao H Y,Zhou H M,et al.Electrochemistry of Bilirubin Oxidase at Carbon Nanotubes[J].J Solid State Electrochem,2010,14:2 4 9-254.
[16] Pang L,Liu J,Hu D,et al.Immobilization of Laccase onto 1-Aminopyrene Functionalized Carbon Nanotubes and Their Electrocatalytic Activity for Oxygen Reduction[J].Electrochim Acta,2010,55:6611-6616.
[17] Lu X B,Zou G F,Li J H.Hemoglobin Entrapped within a Layered Spongy Co3O4 Based Nanocomposite Featuring Direct Electron Transfer and Peroxidase Activity[J].J Mater Chem,2007,17(14):1427-1432.
[18] Zhu Y F,Kaskel S,Shi J L,et al.Immobilization of Trametes versicolor Laccase on Magnetically Separable Mesoporous Sihca Spheres[J].Chem Mater,2007,19:6408-6413.
[19] Vinu A.Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter,Surface Area and Nitrogen Content[J].Adv Funct Mater,2008,18:816-827.
[20] Zhao H Y,Zhou H M,Zhang J X,et al.Carbon Nanotube-Hydroxyapatite Nanocomposite:A Novel Platform for Glucose/O2 Biofuel cell[J].Biosens Bioelectron,2009,25:463-468.
[21] ZENG Han,GONG Lanxin.Function of Chemical Sensor Based on the Immobilization of Laccase on the Composite of Chitosan-g-N-carboxymethyl-2-sulfo-4,5-2H Imidazolinone and Multiwall Carbon Nanotubes[J].Chinese J Appl Chem,2012,29(4):462-469(in Chinese).曾涵,龚兰新.壳聚糖-g-N-羧甲基-2-硫代-4,5-2H咪唑啉酮-多壁碳纳米管复合物固定漆酶基化学传感器的性能[J].应用化学,2012,29(4):462-469.
[22] Palmer A E,Randall D W,Xu F,et al.Spectroscopic Studies and Electronic Structure Description of the High Potential Type 1 Copper Site in Fungal Laccase:Insight into the Effect of the Axial Ligand[J].J Am Chem Soc,1999,121:7138-7149.
[23] Tsujimura S,Kamitaka S,Kano K.Diffusion-Controlled Oxygen Reduction on Multi-Copper Oxidase-Adsorbed Carbon Aerogel Electrodes without Mediator[J].Fuel Cells,2007,6:463-469.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%