以不锈钢网为集流体,采用辊压工艺制备了Fe3O4质量分数分别为0%、2.5%、5.0%和7.5%的不锈钢网、活性炭粉和Fe3O4构成的复合阳极AcM、AcFeM1、AcFeM2和AcFeM3,研究了Fe3O4含量对单室无膜空气阴极微生物燃料电池(MFC)产电性能的影响,并通过塔菲尔曲线和阳极充电-放电测试研究了不同Fe3O4含量的阳极的电化学行为.结果表明,阳极Fe3O4质量分数由0%增加至2.5%、5.0%时,MFCs的最大输出功率和净电容电荷由AcM阳极的664 mW/m2和293.9 C分别上升至AcFeM1、AcFeM2电极的731 mW/m2和300.4 C、809 mW/m2和388.5 C,当Fe3O4含量继续增加至7.5%时,MFCs的产电效率和净电容电荷均减小,Fe3O4质量分数在5.0%时,MFCs性能最佳;电化学测试进一步说明Fe3O4质量分数在5.0%时,MFCs阳极的动力学活性最好.
参考文献
[1] | Cao X X,Huang X,Liang P,et al.A New Method for Water Desalination Using Microbial Desalination Cells[J].Environ Sci Technol,2009,43(18):7148-7152. |
[2] | Chen X,Xia X,Liang P,et al.Stacked Microbial Desalination Cells to Enhance Water Desalination Efficiency[J].Environ Sci Technol,2011,45(6):2465-2470. |
[3] | Lu L,Xing D F,Liu B F,et al.Enhanced Hydrogen Production from Waste Activated Sludge by Cascade Utilization of Organic Matter in Microbial Electrolysis Cells[J].Water Res,2012,46(4):1015-1026. |
[4] | Kim Y,Logan B E.Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production[J].Environ Sci Technol,2011,45 (13):5834-5839. |
[5] | Feng C H,Ma L,Li F B,et al.A Polypyrrole/anthraquinone-2,6-disulphonic Disodium Salt (PPy/AQDS)-modified Anode to Improve Performance of Microbial Fuel Cells[J].Biosens Bioelectron,2010,25 (6):1516-1520. |
[6] | Lowy D A,Tender L M,Zeikus J G,et al.Harvesting Energy from the Marine Sediment-water Interface:Ⅱ.Kinetic Activity of Anode Materials[J].Biosens Bioelectron,2006,21(11):2058-2063. |
[7] | Rabaey K,Rodriguez J,Blackall L L,et al.Microbial Ecology Meets Electrochemistry:Electricity-driven and Driving Communities[J].Isme J,2007,1(1):9-18. |
[8] | Wang X,Cheng S A,Feng Y J,et al.Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells[J].Environ Sci Technol,2009,43(17):6870-6874. |
[9] | Wang H M,Davidson M,Zuo Y,et al.Recycled Tire Crumb Rubber Anodes for Sustainable Power Production in Microbial Fuel Cells[J].J Power Sources,2011,196(14):5863-5866. |
[10] | Li J P,Gao H D A.Renewable Potentiometric Immunosensor Based on Fe3O4 Nanoparticles Immobilized Anti-IgG[J].Electroanalysis,2008,20 (8):881-887. |
[11] | Chen J,Huang K L,Liu S Q.Hydrothermal Preparation of Octadecahedron Fe3O4 Thin Film for Use in an Electrochemical Supercapacitor[J].Electrochim Acta,2009,55 (1):1-5. |
[12] | Peng X,Yu H,Wang X,et al.Enhanced Performance and Capacitance Behavior of Anode by Rolling Fe3O4 into Activated Carbon in Microbial Fuel Vells[J].Bioresour Technol,2012,121:450-453. |
[13] | Zhao G,Feng J J,Zhang Q L,et al.Synthesis and Characterization of Prussian Blue Modified Magnetite Nanoparticles and Its Application to the Electrocatalytic Reduction of H2O2[J].Chem Mater,2005,17(12):3154-3159. |
[14] | Wang X,Cai Z,Zhou Q X,et al.Bioelectrochemical Stimulation of Petroleum Hydrocarbon Degradation in Saline Soil Using U-Tube Microbial Fuel Cells[J].Biotechnol Bioeng,2012,109(2):426-433. |
[15] | Liu H,Logan B E.Electricity Generation Using an Air-cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane[J].Environ Sci Technol,2004,38(14):4040-4046. |
[16] | Deeke A,Sleutels T H J A,Hamelers H V M,et al.Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells[J].Environ Sci Technol,2012,46(6):3554-3560. |
[17] | Logan B E,Regan J M.Microbial Challenges and Applications[J].Environ Sci Technol,2006,40(17):5172-5180. |
[18] | Ji J Y,Jia Y J,Wu W G,et al.A Layer-by-layer Self-assembled Fe2O3 Nanorod-based Composite Multilayer Film on ITO Anode in Microbial Fuel Cell[J].Colloids Surf A,2011,390(1/3):56-61. |
[19] | Liu C,Zachara J M,Gorby Y A,et al.Microbial Reduction of Fe(Ⅲ) and Sorption/precipitation of Fe(Ⅱ) on Shewanella Putrefaciens Strain CN32[J].Environ Sci Technol,2001,35 (7):1385-1393. |
[20] | Uria N,Berbel X M,Sanchez O,et al.Transient Storage of Electrical Charge in Biofilms of Shewanella Oneidensis MR-1 Growing in a Microbial Fuel Cell[J].Environ Sci Technol,2011,45(23):10250-10256. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%