欢迎登录材料期刊网

材料期刊网

高级检索

通过溶胶-凝胶法,制备了银/二氧化硅核壳材料(Ag@SiO2),对SiO2壳层厚度进行了有效调控,并系统研究了壳层厚度对银的等离子体共振峰(LSPR)以及对折射率灵敏度(RIS)的影响.研究结果表明,随SiO2壳层包覆厚度的增加,银纳米颗粒的LSPR吸收峰呈现先红移后蓝移的规律.对于粒径为50 nm的银纳米颗粒,当SiO2壳层达到65nm时,LSPR最大吸收波长为465nm.进一步增加SiO2壳层厚度,LSPR发生蓝移并且强度变弱,当SiO2壳层达到120nm时,LSPR吸收峰已无法清晰辨认.研究了Ag@SiO2材料的RIS效应,发现随着SiO2厚度的增大RIS效应逐渐变小.

参考文献

[1] Wiley B J,Chen Y C,McLellan J M,et al.Synthesis and Optical Properties of Silver Nanobars and Nanorice[J].Nano Lett,2007,7(4):1032-1036.
[2] Adhikari B,Banerjee A.Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and Hg-Ⅱ Sensing[J].Chem Mat,2010,22(15):4364-4371.
[3] Yguerabide J,Yguerabide E E.Light-scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications-Ⅰ.Theory[J].Anal Biochem,1998,262(2):137-156.
[4] ZHOU Wei,ZHANG Wei,WANG Cheng,et al.The Analysis of Nobel Metal Nanoparticles' LSPR Phenomena[J].Chinese J Sens Actuators,2010,23 (5):630-634 (in Chinese).周伟,张维,王程,等.贵金属纳米颗粒LSPR现象研究[J].传感技术学报,2010,23 (5):630-634.
[5] Kreno L E,Hupp J T,Van Duyne R P.Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing[J].Anal Chem,2010,82(19):8042-8046.
[6] Hall W P,Modica J,Anker J,et al.A Conformation-and Ion-Sensitive Plasmonic Biosensor[J].Nano Lett,2011,11(3):1098-1105.
[7] Hongyun W,Guoxin R,Linglu Y,et al.Silver Plasmon Rulers as Probes in Polarization-resolved Plasmon Coupling Microscopy[J].Proc SPIE-Int Soc Opt Eng,2011,7911:791101-791105.
[8] Wang Y,Yang F,Yang X.Colorimetric Detection of Mercury (Ⅱ) Ion Using Unmodified Silver Nanoparticles and Mercury-Specific Oligonucleotides[J].ACS Appl Mater Interf,2010,2(2):339-342.
[9] Bastakoti B P,Guragain S,Yusa S,et al.Novel Synthesis Route for Ag@SiO2 Core-shell Nanoparticles via Micelle Template of Double Hydrophilic Block Copolymer[J].RSC Adv,2012,2(14):5938-5940.
[10] Graf C,Vossen D L J,Imhof A,et al.A General Method to Coat Colloidal Particles with Silica[J].Langmuir,2003,19(17):6693-6700.
[11] Shanthil M,Thomas R,Swathi R S,et al.Ag@SiO2 Core-Shell Nanostructures:Distance-Dependent Plasmon Coupling and SERS Investigation[J].J Phys Chem Lett,2012,3(11):1459-1464.
[12] Zhang R H,Wang Z Y,Song C Y,et al.Surface-Enhanced Fluorescence from Fluorophore-Assembled Monolayers by Using Ag@SiO2 Nanoparticles[J].Chem Phys Chem,2011,12 (5):992-998.
[13] Yuling L,Zhimin C,Dapeng L,et al.Colorimetric Determination of Pyrethroids Based on Core-shell Ag@SiO2 Nanoparticles[J].Sens Actuators B Chem,2011,155(2):878-883.
[14] Banholzer M J,Harris N,Millstone J E,et al.Abnormally Large Plasmonic Shifts in Silica-Protected Gold Triangular Nanoprisms[J].J Phys Chem C,2010,114(16):7521-7526.
[15] Sekhon J S,Verma S S.Refractive Index Sensitivity Analysis of Ag,Au,and Cu Nanoparticles[J].Plasmonics,2011,6(2):311-317.
[16] Charles D E,Aherne D,Gara M,et al.Versatile Solution Phase Triangular Silver Nanoplates for Highly Sensitive Plasmon Resonance Sensing[J].ACS Nano,2010,4(1):55-64.
[17] WANG Rui,TANG Jianguo,ZHOU Houqiang,et al.Research on Dispersion Stability of Nano Silver[J].Met Funct Mater,2010,17(1):17-21(in Chinese).王蕊,唐建国,周厚强,等.纳米银的分散稳定性和光谱性质研究[J].金属功能材料,2010,17(1):17-21.
[18] St(o)ber W,Fink A,Bohn E.Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J].J Colloid Interface Sci,1968,26(1):62-69.
[19] Yang H,Liu Y,Shen Q H,et al.Mesoporous Silica Microcapsule-supported Ag Nanoparticles Fabricated via Nano-assembly and Its Antibacterial Properties[J].J Mater Chem,2012,22(45):24132-24138.
[20] Kobayashi Y,Katakami H,Mine E,et al.Silica Coating of Silver Nanoparticles Using a Modified Stober Method[J].J Colloid Interface Sci,2005,283(2):392-396.
[21] Miller M M,Lazarides A A.Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment[J].J Phys Chem B,2005,109(46):21556-21565.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%