欢迎登录材料期刊网

材料期刊网

高级检索

采用反气相色谱(IGC)测定了环氧E51树脂在30、40、50和60 ℃下的表面张力和溶解度参数.采用Schultz法,以正癸烷、正壬烷、正辛烷和正庚烷为非极性溶剂探针,计算了不同温度下环氧E51树脂的色散表面张力.根据Good-van Oss方程,以甲苯为碱性探针,二氯甲烷为酸性探针,计算得到环氧E51树脂的极性表面张力.结果表明,环氧E51树脂的色散表面张力和极性表面张力均随着温度的升高而线性降低.根据不同溶剂探针与树脂间的Flory-Huggins相互作用参数,采用DiPaola-Baranyi和Guillet方法计算得到环氧E51树脂在不同温度下的溶解度参数,其在30、40、50和60 ℃下分别为11.78、11.57、11.48和11.14 MPa1/2.根据表面张力、内聚能和溶解度参数的相互关系,计算得到不同温度下溶解度参数的色散和极性分量.结果发现,环氧E51树脂的溶解度参数的色散分量大于极性分量,且均随着温度的升高而降低.

Inverse gas chromatography (IGC) was used to measure the surface tension and solubility parameter of E51 epoxy resin in this work. By using the Schultz method, decane, nonane, octane and heptane were chosen as the neutral probes to calculate the dispersive surface tensions (γD). Based on the Good-van Oss equation, the specific surface tension (γSP) of E51 epoxy resin was calculated with the acidic probe of dichloromethane and the basic probe of toluene. The results showed that the γD and γSP of the E51 resin decreased linearly with the increase of temperature. According to the Flory-Huggins parameters (χ) between the resin and a series of probes, the solubility parameters (δ) of E51 resin at different temperatures were estimated using the method developed by DiPaola-Baranyi and Guillet. It was found that the values of δ of the E51 resin were 11.78, 11.57, 11.48 and 11.14 MPa1/2 at 30, 40, 50 and 60 ℃, respectively. The dispersive component (δD) and the specific component (δSP) of solubility parameter at different temperatures of the E51 resin were investigated according to the relationships between surface tension, cohesion energy and solubility parameter. The results showed that the values of δD were higher than those of δSP for the epoxy resin, and both of them decreased with the increase of temperature.

参考文献

[1] Li J Q,Ma H Y,Huang Y D.Mater Chem Phys,2005,89(2/3):367
[2] Wu S H.Polymer Interface and Adhesion.Pan Q Y,Wu D H,transl.Beijing:China Textile Press,1987
[3] Fedors R F.Polym Eng Sci,2004,14(2):147
[4] Lindsay B,Abel M L,Watts J F.Carbon,2007,45(12):2433
[5] DiPaola-Baranyi G,Guillet J E.Macromolecules,1978,11(1):228
[6] Mostafa N E,Elssa E A.Chinese Journal of Chromatography,2006,24(3):284
[7] Revelli A L,Sprunger L M,Gibbs J,et al.J Chem Eng Data,2009,54(3):977
[8] Zeng C Y,Li J D,Wang D,et al.J Chem Eng Data,2006,51(1):93
[9] Ma X Y,Qu X H,Zhang Q L,et al.Polymer,2008,49(16):3590
[10] Lavielle L,Schultz J.Langmuir,1991,7(5):978
[11] Mills R H,Tze W T Y,D J Gardner,et al.J Appl Polym Sci,2008,109(6):3519
[12] Panda S,Parcher J F.Anal Chem,1997,69(13):2485
[13] Menzel R,Lee A,Bismarck A,et al.Langmuir,2009,25(14):8340
[14] Schultz J,Lavielle L,Martin C.J Adhesion,1987,23(1):45
[15] DiPaola-Baranyi G.Macromolecules,1982,15(2):622
[16] Wang J,Zhang Z Z,Yang X Z,et al.Chinese Journal of Chromatography,2009,27(4):480
[17] van Oss C J,Good R J,Chaudhury M K.Langmuir,1988,4(4):884
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%