欢迎登录材料期刊网

材料期刊网

高级检索

应用可逆加成-断裂链转移( RAFT)策略制备了一种抗原决定基表面印迹微球。这一工作以转铁蛋白的抗原决定基 N端九肽作为模板,通过共价键合的方式固载于修饰了戊二醛的硅胶颗粒表面。然后以甲基丙烯酸、甲基丙烯酰羟乙酯为功能单体,甲叉基双丙烯酰胺为交联剂,偶氮二异丁腈( AIBN)为引发剂,N,N-二甲基甲酰胺为溶剂,在三硫酯试剂2-(十二烷基三硫代碳酸酯基)-2-甲基丙酸的调控下,于70℃进行活性-可控的聚合反应,制备得到分子印迹微球。该材料对模板抗原决定基的识别容量为2.36 mg/g,印迹因子为1.89;对转铁蛋白的识别容量为4.98 mg/g,印迹因子为1.61,120 min内可达到吸附平衡;在多蛋白质竞争识别中,该材料对转铁蛋白识别的印迹因子远高于细胞色素C、乳球蛋白等其他竞争蛋白质的印迹因子。以上结果证明,通过RAFT策略制备得到的抗原决定基分子印迹材料在对抗原决定基具有良好的识别能力的同时,对模板抗原决定基对应的转铁蛋白也具有优良的选择性、较高的识别容量和较快的识别速度。

A kind of novel epitope surface imprinted particles was prepared by the reversible addition fragmentation chain transfer( RAFT)strategy. The epitope of transferrin,N-terminal peptide of the protein with nine amino acid residues,was chosen as the template and immobi-lized with covalent interaction on the surface of silica particles through the truss arm glutaralde-hyde. The living/controlled polymerization was initialed by 2,2′-azobisisobutyronitrile( AIBN) at 70 ℃ in the solution of N,N-dimethylformamide,with the regulation by triothioester agent 2-( dodecylthiocarbonothioylthio )-2-methylpropanoic acid. Methacrylic acid and 2-hydroxyethyl methacrylate were chosen as the functional monomers and N,N-methylenebisacrylamide was chosen as the cross-linker in this polymerization. For this material,the binding capacity of the nine residue peptide could reach 2. 36 mg/g with the imprinting factor( IF)of 1. 89,while that for transferrin could reach 4. 98 mg/g with IF of 1. 61. The equilibrium could be achieved in 120 min for the transferrin recognition. In multi-protein competitive recognition,the imprinted fac-tor of transferrin was the highest in the mixture of transferrin and other competitive proteins , such as cytochrome C and β-lactoglobulin. The results indicated that these epitope surface imprinted particles with RAFT strategy could recognize not only the nine residue peptide but also the transferrin with good selectivity,high binding capacity and fast mass transfer.

参考文献

[1] 夏英;张澜;赵尔成.[J].色谱,201432(02):117.
[2] 陈方方;师彦平.[J].色谱,201331(07):626.
[3] Bossi A M;Bonini F;Turner A P F.[J].Biosens Bioelec-tron,200722(06):1131.
[4] Cutivet A;Schembri C;Kovensky J.[J].Journal of the American Chemical Society,2009131(41):14699.
[5] Liu J X;Deng Q L;Yang K G.[J].Journal of Separation Science,201033(17):2757.
[6] Cai D;Ren L;Zhao H Z.[J].Nature Nanotechnology,20105(08):597.
[7] Turner N W;Jeans C W;Brain K R.[J].Biotecnology Progress,200622(06):1474.
[8] Yang K G;Zhang L H;Liang Z.[J].Analytical Biochemistry,2012403(08):2173.
[9] Nishino H;Huang C S;Shea K J.[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,200645(15):2392.
[10] Whitcombe M J;Chianella I;Larcombe L.[J].CHEMICAL SOCIETY REVIEWS,201140(03):1547.
[11] Rachkov A;Minour N.[J].Journal of Chromatography A,2000889(01):111.
[12] Rachkov A;Minour N.[J].Biochimica et Biophysica Acta,20011544(01):255.
[13] Lu C H;Zhang Y;Tang S F.[J].BIOSENSORS & BIOELECTRONICS,201231(01):439.
[14] Bossi A M;Sharma P S;Montana L.[J].Analytical Chemistry,201284(09):4036.
[15] Yang Y Q;He X W;Wang Y Z.[J].BIOSENSORS & BIOELECTRONICS,201454:266.
[16] Chiefari J;Chong Y K;Ercole F.[J].MACROMOLECULES,199831(16):5559.
[17] Moad J;Rizzardo E;Tang S H.[J].Australian Journal of Chemistry,200659(10):669.
[18] Fu G D;Xu L Q;Yao F.[J].ACS Appl Mater Interfaces,20091(02):239.
[19] Moraes J;Ohno K;Maschmeyer T.[J].Chemistry Communications,201349(80):9077.
[20] Yang K;Huang X Y;Zhu M.[J].ACS Appl Mater Inter-faces,20146(03):1812.
[21] Ma Y;Pan G Q;Zhang Y.[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,201352(05):1511.
[22] Halhalli M R;Schillinger E;Aureliano C S A.[J].CHEMISTRY OF MATERIALS,201224(15):2909.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%