欢迎登录材料期刊网

材料期刊网

高级检索

二氮杂芴衍生物及其配位化合物在化学、有机光电器件,以及生物学方面都有着广泛而重要的应用.文章对二氮杂芴的基本化学结构、化学性质,以及二氮杂芴衍生物和配位化合物在有机电致发光器件方面的应用给予综述.对二氮杂芴材料目前在合成和应用方面存在的问题及可能的解决办法进行了讨论,对其在未来的研究发展和应用前景进行了展望.

参考文献

[1] Dong H,Zhu H,Meng Q,etal.Organic photoresponse materials and devices[J].Chem.Soc.Rev.,2012,41(5):1754-1808.
[2] Zhong C,Duan C,Huang F,et al.Materials and devices toward fully solution processable organic light-emitting diodes[J].Chem.Mater,2011,23(3):326-340.
[3] 高淑雅,孔祥朝,张方辉,等.有机电致发光器件薄膜封装研究进展[J].液晶与显示,2012,27(2):198-203.
[4] 张胜兰,陈润锋,姜鸿基,等.含磷有机电致发光材料[J].化学进展,2010,22(5):898-904.
[5] 赵凡凡,梁春军,何志群.全湿法制备聚合物电致发光器件[J].发光学报,2012,33(2):206-209.
[6] 周智,王峰超,刘素琴,等.高效率荧光粉转换型白光有机发光二极管的制备和性能研究[J].发光学报,2012,33(2):176-181.
[7] 侯林涛,王平,王标,等.高效叠层有机电致发光器件[J].液晶与显示2011,26(2):142-146.
[8] 张静,张方辉,阎洪刚.HAT-CN作为空穴注入层的高效白色荧光有机电致发光二极管[J].液晶与显示2011,26(4):490-495.
[9] 殷月红,邓振波,伦建超,等.Znse(zns)纳米晶与meh ppv的共掺有机电致发光器件[J].发光学报,2012,33(2):171-175.
[10] 李青,赵娟,王琦,等.间隔层对双发光层白色有机电致发光器件性能的影响[J].发光学报,2012,33(1):45-50.
[11] 丁磊,张方辉,马颖.一种新型双空穴注入层微腔OLED[J].液晶与显示2011,26(4):496-500.
[12] 姜文龙,赵雷,张刚,等.基于DSA-ph的高效蓝色有机电致发光器件[J].液晶与显示2011,26(5):616-619.
[13] J ung B,Tremblay N,Yeh M,et al.Molecular design and synthetic approaches to electron-transporting organic transistor semiconductors[J].Chem.Mater.,2011,23(3):568-582.
[14] Anthony J,Facchetti A,Heeney M,et al.n-Type organic semiconductors in organic electronics[J].Adv.Mater.,2010,22(34):3876-3892.
[15] Sonar P,Lim J,Chan K.Organic non-fullerene acceptors for organic photovoltaics[J].Energ.Environ.Sci.,2011,4(5):1558-1574.
[16] Yun S,Kim J,Shin S,et al.High-performance n-type organic semiconductors:incorporating specific electronwithdrawing motifs to achieve tight molecular stacking and optimized energy levels[J].Adv.Mater,2012,24(7):911-915.
[17] Kulkarni A,Tonzola C,Babel A,etal.Electron transport materials for organic light-emitting diodes[J].Chem.Mater.,2004,16(23):4556-4573.
[18] Meng H,Wudl F.A robust low band gap processable n-type conducting polymer based on poly(isothianaphthene)[J].Macromolecules,2001,34(6):1810-1816.
[19] O'Neill M,Kelly S.Ordered materials for organic electronics and photonics[J].Adv.Mater.,2011,23 (5):566-584.
[20] Hertel D,Bassler H.Photoconduction in amorphous organic solids[J].Chem.Phys.Chem.,2008,9 (5):666-688.
[21] Chua L,Zaumseil J,Chang J,et al.General observation of n-type field-effect behaviour in organic semiconductors[J].Nature,2005,434(7030):194-199.
[22] Chaskar A,Chen H,Wong K.Bipolar host materials:a chemical approach for highly efficient electrophosphorescent devices[J].Adv.Mater.,2011,23(34):3876-3895.
[23] Ono K,Saito K.Chemstry and applications of 4,5-diazafluorenes[J].Heterocycles,2008,75(10):2381-2413.
[24] Riklin M,yon Zelewsky A,Bashall A,et al.Synthesis,structure and chemistry of a twisted olefinic bis-didentate proligand:5,5-Bi-5H-cyclopenta[2,1-bo:o3,4-b]dipyridinylidene[J].Helv.Chim.Acta.,1999,82(10):1666-1680.
[25] Wang Q,Yuen MC-W,Lu G-L,et al.Synthesis of 9,9-dialkyl-4,5-diazafluorene derivatives and their structureactivity relationships toward human carcinoma cell lines[J].Chem.Med.Chem.,2010,5(4):559-566.
[26] Sako K,Misaki Y,Fujiwara M,et al.Synthesis of diazafluorene-functionalized TTF donors[J].Chem.Lett.,2002,31(6):592-593.
[27] Sako K,Mugishima Y,Iwanaga T,et al.Synthesis and redox properties of pi-conjugated 4,5-diazafluorene derivatives incorporating 9-cyanomethylene moiety as an electron acceptor[J].Tetrahedron Lett.,2011,52 (44):5865-5868.
[28] Wong K,Chen R,Fang F,et al.4,5-diazafluorene-incorporated ter(9,9-diarylfluorene):A novel molecular doping strategy for improving the electron injection property of a highly efficient OLED blue emitter[J].Org.Lett.,2005,7(10):1979-1982.
[29] Ono K,Nagano K,Suto M,et al.Synthesis and electron-transporting ability of 3,6-diaryl-4,5-diazafluorenes modi fied using direct arylation[J].Heterocycles,2007,71(4):799-804.
[30] Ohrui H,Senoo A,Kosuge T.Diazafluorence Compound:US patent,US20080161574 A1[P].2008-07-03.
[31] 铃木幸一,笠原麻纪,川合达人,等.、ヅアザフル才レン化合物及びそれを用い、た有機發光素子:日本专利,JP200491444A[P].2004-03-25.
[32] Mlochowski J,Szulc Z.Electrophilic substitution in the azafluorenone systems-bromination of azafluorenones[J].J.Pract.Chem.,1980,332(6):971-980.
[33] Deshpande M,Kumbhar A.Mixed-ligand complexes of ruthenium(Ⅱ) incorporating a diazo ligand:synthesis,characterization andDNA binding[J].J.Chem.Sci.,2005,117(2):153-159.
[34] Jiang H,Song D.Syntheses,characterizations,and reactivities of 4,5-diazafluorenide complexes of palladium(Ⅱ)and rhodium(Ⅰ)[J].Organometallics,2008,27(14):3587-3592.
[35] Jiang H,Stepowska E,Song D.Syntheses,structures and reactivities of rhodium 4,5-diazafluorene derivatives[J].Eur.J.Inorg.Chem.,2009,2009(14):2083-2089.
[36] Kraft B,Eppley H,Huffman J,et al.Cu(Ⅱ)-mediated intramolecular carbene cation radical formation:Relevance to unimolecular metal-ligand radical intermediates[J].J.Am.Chem.Soc.,2002,124(2):272-280.
[37] Liu Z,Wen F,Li W.Synthesis and electroluminescence properties of europium(Ⅲ) complexes with new second ligands[J].Thin Solid Film,2005,478(1-2):265-270.
[38] Querol M,Stoekli-Evans H,Belser P.4,5-diazafluorene-based overcrowded alkene:A new ligand for transition metal complexes[J].Org.Lett.,2002,4(7):1067-1070.
[39] Chen H,Wong K,Liu Y,etal.Bis(diphenylamino)-9.9′-spirobifluorene functionalized Ir(Ⅲ) complex:a conceptual design an route to a three-in-one system possessing emitting core and electron and hole transport peripherals[J].J.Mater.Chem.,2011,21(3):768-774.
[40] Ono K,Tanaka H,Shiozawa M,et al.A dye-sensitized solar cell using a red ruthenium(Ⅱ) complex with 9,9-bis (4-methoxyphenyl)-4,5-diazafluorene[J].Chem.Lett.,2007,36(7):892-893.
[41] Staniszewski A,Heuer W,Meyer G.High-extinction ruthenium compounds for sunlight harvesting and hole transport[J].Inorg.Chem.,2008,47(16):7062-7064.
[42] Dragonetti C,Valore A,Colombo A,et al.An investigation on the second order NLO properties of novel cationic cyclometallated Ir(Ⅲ) complexes of the type[Ir(2-phenylpyridine) (2) (9-R-4,5-diazafluorene)]+ (R =H,fulleridene) and the related neutral complex with the new 9-fulleriden-4-monoazafluorene ligand[J].Inorg.Chim.Acta.,2012,382:72-78.
[43] Valore A,Balordi M,Colombo A,et al.Novel ruthenium(Ⅱ) complexes with substituted 1,10-phenanthroline or 4,5-diazafluorene linked to a fullerene as highly active second order NLO chromophores[J].Dalton Trans.,2010,39(42):10314-10318.
[44] Eppley H,Sato S,Ellington A,et al.Transition metal kinamycin model as a DNA photocleaver for hypoxic environments:bis(9-diazo-4,5-diazafluorene)copper(Ⅱ) nitrate[J].Chem.Commun.,1999,1999(23):2405-2406.
[45] Yin Q,Han W,Zhu Y,et al.Direct electrochemical behavior of cytochrome C immobilized on 4,5-diazafluorene-9-one modified glassy carbon electrode[J].Chin.J.Anal.Chem.,2009,37(1):95-98.
[46] Li G,Liu N,Liu S,et al.Electrochemical biosensor based on the interaction between copper(Ⅱ) complex with 4,5-diazafluorene-9-one and bromine ligands and deoxyribonucleic acid[J].Electrochim.Acta.,2008,53 (6):2870-2876.
[47] Reineke S,Linder F,Schwartz G,et al.White organic light-emitting diodes with fluorescent tube efficiency[J].Nature,2009,459(7244):234-239.
[48] 张小伟,杨楚罗,秦金贵.金属有机电致磷光材料研究进展[J].有机化学,2005,25(8):873-880.
[49] 廖章金,朱彤珺,密保秀,等.小分子铱配合物及其电致发光[J].化学进展,2011,23(8):1627-1643.
[50] Ono K,Yanase T,Ohkita M,et al.Synthesis and properties of 9,9′-Diaryl-4,5-diazafluorenes.A new type of electron-transporting and hole-blocking material in EL device[J].Chem.Lett.,2004,33(3):276-277.
[51] Zheng C,Ye J,Lo M,etal.New ambipolar hosts based on carbazole and 4,5-diazafluorene units for highly efficient blue phosphorescent OLEDs with low efficiency roll-off[J].Chem.Mater.,2012,24(4):643-650.
[52] Li X,Zhang D,Li W,et al.New rhenium complexes containing 4,5-diazafluorene ligand for high-efficiency green electrophosphorescence[J].Synth.Met.,2009,159(13):1340-1344.
[53] Li X,Zhang D,Chi H,et al.Reduced efficiency roll-off in electrophosphorescent devices by a short-living rhenium emitter with well-matched energy levels[J].App.Phys.Lett.,2010,97(26):263303.
[54] Wagenknecht P S,Ford P C.Metal centered ligand field excited states:Their roles in the design and performance of transition metal based photochemical molecular devices[J].Coord.Chem.Rev.,2011,255(5-6):591-616.
[55] Cicoira F,Santato C.Organic light emitting field effect transistors:advances and perspectives[J].Adv.Funct.Mater.,2007,17(17):3421-3434.
[56] Oyamada T,Chang C-H,Chao T-C,et al.Optical properties of oligo(9,9-diarylfluorene) derivatives in thin films and their application for organic light-emitting field-effect transistors[J].J.Phys.Chem.C,2007,111 (1):108-115.
[57] Pei Q,Yu G,Zhang C,et al.Polymer light-emitting electrochemical cells[J].Science,1995,269 (5227):1086-1088.
[58] Chen H-F,Wong K-T,Liu Y-H,et al.Bis(diphenylamino)-9,90-spirobifluorene functionalized Ir(Ⅲ) complex:a conceptual design en route to a three-in-one system possessing emitting core and electron and hole transport peripherals[J].J.Mater.Chem.,2011,21(3):768-774.
[59] Su H,Chen H,Wu C,et al.Decreased turn-on times of single-component light-emitting electrochemical cells by tethering an ionic iridium complex with imidazolium moieties[J].Chem.Asian J.,2008,3(11):1922-1928.
[60] Su H C,Fang F C,Hwu T Y,et al.Highly efficient orange and green solid-state light-emitting electrochemical cells based on cationic IrⅢ complexes with enhanced steric hindrance[J].Adv.Funct.Mater,2007,17(6):1019-1027.
[61] Su H C,Wu C C,Fang F C,et al.Efficient solid-state host-guest light-emitting electrochemical cells based on cationic transition metal complexes[J].App.Phys.Lett.,2006,89(26):261118.
[62] Liao C T,Chen H F,Su H C,et al.Improving the balance of carrier mobilities of host-guest solid-state light-emitting electrochemical cells[J].Phys.Chem.Chem.Phys.,2012,14(3):1262-1269.
[63] Su H C,Chen H F,Fang F C,et al.Solid-State White light-emitting electrochemical cells using iridium-based cationic transition metal complexes[J].J.Am.Chem.Soc.,2008,130(11):3413-3419.
[64] Ho C C,Chen H F,Ho Y C,et al.Phosphorescent sensitized fluorescent solid-state near-infrared light-emitting electrochemical cells[J].Phys.Chem.Chem.Phys.,2011,13(39):17729-17736.
[65] Andrews D,Solomon G,Van Duyne R,et al.Single molecule electronics:increasing dynamic range and switching speed using cross-conjugated species[J].J.Am.Chem.Soc.,2008,130(51):17309-17319.
[66] Ricks A,Solomon G,Colvin M,et al.Controlling electron transfer in donor-bridge-acceptor molecules using crossconjugated bridges[J].J.Am.Chem.Soc.,2010,132(43):15427-15434.
[67] Brunetti F,Gong X,Tong M,et al.Strain and Hueckel aromaticity:driving forces for a promising new generation of electron acceptors in organic electronics[J].Angew.Chem.Int.Ed.,2010,49(3):532-536.
[68] Jaouen F,Proietti E,Lefevre M,et al.Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J].Energ.Environ.Sci.,2011,4(1):114-130.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%