欢迎登录材料期刊网

材料期刊网

高级检索

为了实现威胁源自动报警,使用BP神经网络构建自动报警系统.针对帧差法提取出的目标轮廓有重复和受变化背景影响的问题,提出了一种基于轮廓片段的目标特征提取方法.首先使用k-mediod聚类以剔除重复轮廓,再结合轮廓片段生长的方法,计算待识别轮廓和验证图片集的匹配代价以剔除背景轮廓,提取出匹配代价最小的轮廓生成轮廓片段字典.随后计算归一化的轮廓矩生成特征向量.最后将提取出的特征向量输入事先训练生成的BP神经网络进行分类.实验结果表明,算法适用于典型刚性目标识别,对于实验视频中枪支的平均识别率达到93.5%,单帧平均运算时间3.67 ms;对于Berkeley运动分割数据集中车辆的识别率达到98.2%,单帧平均运算时间5.26 ms.算法具有高实时性、高准确率的特点.

参考文献

[1] 刘翔,周桢.基于分块背景建模的运动目标检测技术[J].液晶与显示,2011,26(6):831-835.
[2] 靳永亮,王延杰,丁南南,等.改进的红外弱小目标检测方法[J].液晶与显示,2011,26(4):555-560.
[3] Chang S H,Cheng F H,Hsu W H.Fast algorithm for point pattern matching:invariant to translations,rotations and scale changes[J].Pattern Recognition,1997,30(2):311-320.
[4] 舒宁,马洪超,孙和利.模式识别的理论与方法[M].武汉:武汉大学出版社,2004.
[5] 边肇祺.模式识别[M].北京:清华大学出版社,1998.
[6] Ma S,Ji C.Performance and efficiency:recent advances in supervised learning[J].Proceeding of the IEEE,1999,87(9):1519-1535.
[7] Skitt P J C.Process Monitoring using auto-associative feedforward artificial neural networks[J].J.Intell.Manuf.,1993,4(1):79-94.
[8] Lampinen J,Oja E.Distortion tolerant pattern recognition based on self-organized feature extraction[J].IEEE Trans on Neural Network,1995,6:539-547.
[9] Jenkins B K,Tanguay A R.Handbook of Neural Computing and Neural Networks[M].Boston:MIT Press,1995.
[10] Xia M,Fang J N,Tang Y.Dynamic depression control of chaotic neural networks for associative memory[J].Neurocomputing,2010,73(2):776-783.
[11] McDuff R J,Simpson P K.An adaptive resonance diagnostics system[J].Neural Network Comp.,1990,2(1):19-29.
[12] Leibe B,Schiel E B.Analyzing appearance and contour based methods for object categorization[C]//Proceedings of CVPR,Madison:IEEE Computer Society,2003:409-415.
[13] Shotton J,Black A,Cipolla R.Countour-based learning for object detection[C]//Proceedings of ICCV,Beijing:IEEE,2005:503-510.
[14] Opelt A,Pinz A,Zisserman A.A boundary-fragment-model for object detection[C]//Proceedings of ECCV,Graz:Institute of Electrical Measurement and Measurement Signal Processing and the Institute for Computer Graphics and Vision,2006:575-588.
[15] Huang Z.Extensions to the k-means algorithm for clustering large data sets with Categorical values[J].Data Mining and Knowledge Discovery,1998,2(3):283-304.
[16] Brraw H G,Tenenbaum J M,Bolles R C.Parametric correspondence and chamfer matching:two new techniques for image matching[C]//Proc 5th Int Joint Conf Artificial Intelligence,San Francisco,USA:Morgan Kanfmann Publishers Inc.,1977:659-663.
[17] 崔潇潇,王贵锦,林行刚.基于边缘片段特征的目标检测[J].清华大学学报,2008,48(10):1636-1638.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%