欢迎登录材料期刊网

材料期刊网

高级检索

利用射频磁控溅射技术,高纯的氩气作为溅射气体,分别选用不同Mg含量的MgxZn1-xO陶瓷靶材,在石英衬底上生长六角纤锌矿结构的MgxZn1-xO薄膜,并对薄膜进行了后期热退火处理.研究了Mg含量对MgxZn1-xO薄膜光学性质的影响.实验结果显示,随着Mg含量的增加,薄膜的带隙变宽;光致发光光谱中近带边发射中心蓝移,近带边紫外发射与可见光区深能级发射强度比值减小,发光质量下降;拉曼光谱仍然保持着ZnO的拉曼振动模式,但随着Mg含量的增加,E2high振动峰逐渐展宽,峰型对称性变差.分析表明,随着Mg的合金化,薄膜中产生了更多的杂质缺陷,结晶质量下降.

参考文献

[1] Bagnall D M,Chen Y F,Zhu Z,et al.Optically pumped lasing of ZnO at room temperature[J].Appl.Phys.Lett.,1997,70(17):2230-2232.
[2] Tang Z K,Wong G K L,Yu P,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J].Appl.Phys.Lett.,1998,72(25):3270-3272.
[3] 范希武.宽带Ⅱ-Ⅵ族半导体及其低维度结构的生长和光学性质研究进展[J].发光学报,2002,23(4):317-329.Fan X W.Research progress on growth and optical properties of wide band gap Ⅱ-,Ⅵ compound semiconductors and its low dimensional structure[J].Chin.J.Lumin.,2002,23(4):317-329.(in Chinese)
[4] 苏晶,刘玉荣,莫昌文,等.ZnO基薄膜晶体管有源层制备技术的研究进展[J].液晶与显示,2013,28(3):315-322.Su J,Liu Y R,Mo C W,et al.Research Development on preparation technologies of active layer preparation of Zn O-based thin film[J].Chinese Journal of Liquid Crystals and Displays,2013,28(3):315-322.(in Chinese)
[5] 申德振,梅增霞,梁会力,等.氧化锌基材料、异质结构及光电器件[J].发光学报,2014,35(1):1-60.Shen D Z,Mei Z X,Liang H L,et al.ZnO-based material,heterojunction and photo-electronic device[J].Chin.J.Lumin.,2014,35(1):1-60.(in Chinese)
[6] Tsukazaki A,Ohtomo A,Onuma T,et al.Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J].Nat.Mater.,2005,4(1):42-46.
[7] Look D C.Recent advances in ZnO materials and devices[J].Mater.Sci.Eng.B,2001,80(1-3):83-87.
[8] 庞海霞,刘长珍,谢安,等.热处理温度对片状ZnO晶体结构和光学性质的影响[J].液晶与显示,2012,27(2):158-162.Pang H X,Liu C Z,Xie A,et al.Effect of annealing temperature on structure and optical properties of sheet-like ZnO crystals[J].Chinese Journal of Liquid Crystals and Displays,2012,27(2):158-162.(in Chinese)
[9] Shao-Tzu Lien,Hsin-Chieh Li,Yao-Jhen Yang,etal.Atmospheric pressure plasma jet annealed ZnO films for mgzno/zno heterojunctions[J].J.Phys.D:Appl.Phys,2013,46(7):075202.
[10] Mohanta S K,Nakamura A,Temmyo J.Synthesis and characterization of N,in Co-doped MgZnO films using remote-plasma-enhanced metalorganic chemical vapor deposition[J].Journal of Crystal Growth,2013,375:1-5.
[11] Jui-Fen Chien,Huan-Yu Shih,Hua-Yang Liao.P-type conductivity of MgZnO∶ (N∶Ga) thin films prepared by remote plasma in-situ atomic layer doping[J].ECSJ.Solid State Sci.Technol,2013,2(11):R249-R253.
[12] Ohtomo A,Kawasaki M,T Koida,et al.MgxZn1-xO as a Ⅱ-Ⅵ wide gap semiconductor alloy[J].Appl.Phys.Lett.,1998,72(19):2466-2468.
[13] Choopun S,Vispute R D,Yang W,et al.Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films[J].Appl.Phys.Lett.,2002,80(9):1529-1531.
[14] Li Y F,Yao B,Lu Y M,et a l.Realization of p-type conduction in undoped MgxZn1-x O thin films by controlling Mg content[J].Appl.Phys.Lett.,2007,91(2):232115.
[15] 王伟娜,方庆清,周军,等.制备工艺对Mgx Zn1-xO薄膜结构及光学性能的影响[J].物理学报,2009,58(5):3461-3467.Wang W N,Fang Q Q,Zhou J,et al.Influence of fabrication technique on structure and photoluminescence of Zn1-xMgxO thin films[J].Acta Physica Sinica,2009,58(5):3461-3467.(in Chinese)
[16] Cho S,Ma J,Kim Y,et al.Photoluminescence and ultraviolet lasing of Polycrystalline Zno thin films Prepared by the oxidation of the metallic Zn[J].Appl.Phys.Lett.,1999,75(18):2761-2763.
[17] Reynolds D C,Look D C,Jogni B,etal.Similarities in the bandage and deep-center photoluminescence of ZnO and GaN[J].Solid State Commun.,1997,101(9):643-646.
[18] Vanheusden K,Warren W L,SeagerC H,et al.Mechanisms behind green photoluminescence in ZnO phosphor powders[J].J.Appl.Phys.1996,79(10):7983-7990.
[19] Bylander E G,Surface effects on the low-energy cathodoluminescence of zinc Oxide[J].J.Appl.Phys.,1978,49(3):1188-1195.
[20] Callleja J M,Cardona M.Resonant raman scattering in ZnO[J].Phys.Rev.B,1977,16(8):3753-3761.
[21] Decremps F,Pellicer-Porres J,Saitta A M,et al.High-pressure Raman spectroscopy study of Wurtzite ZnO[J].Phys.Rev.B,2002,65(9):092101.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%