鉴于生物视觉特征对于图像的良好表征能力,提出了一种基于生物视觉特征的无参考型图像质量评价方法。对生物视觉 ST 模型进行了研究和分析,完成了对图像的稀疏化表示;利用最小二乘支持向量机回归方法训练生物视觉特征到图像质量的映射关系,获得能够预测图像质量的回归器;通过学习的回归器完成了对图像质量的评价。基于 LIVE 图像库的实验结果表明,该方法对于特定失真和交叉失真的预测误差分别为2%和5%左右,并且与目前技术条件下的质量评价方法相比具有很好的精确性和单调性。
As the biological vision features show superior performance to images representation,a non-reference image quality assessment approach based on biological vision features is proposed.The standard model of biological vision is studied and analyzed,and the sparse representation of image is accomplished through the model.The mapping correlation between biological vision features and image quality scores is trained with the regression technique of least square-support vector machine,which gains the regressor that can predict the image quality.The score of image quality assessment is accom-plished with the trained regressor at last.The experimental results based on LIVE database show that the proposed approach has predicting error of 2% and 5% for specific distortion and cross-validation distortion respectively,and exhibits a superior accuracy and monotonicity compared to state-of-the-art quality assessment approaches.
参考文献
[1] | 王宇庆.局部方差在图像质量评价中的应用[J].中国光学,20114(05):531-536. |
[2] | 巩盾;田铁印;王红.温度环境下空间遥感光学系统成像质量的检测[J].中国光学,20125(06):602-609. |
[3] | Mittal A;Moorthy A K;Bovik A C.No-reference image quality assessment in the spatial domain[J].IEEE Transactions on Image Processing,201221(12):4695-4708. |
[4] | 高新波;路文.视觉信息质量评价方法[M].西安:西安电子科技大学出版社,2011 |
[5] | 姚军财.基于人眼对比度敏感视觉特性的图像质量评价方法[J].液晶与显示,201126(03):390-396. |
[6] | Moorthy A K;Bovik A C.Blind image quality assessment:from natural scene statistics to perceptual quality[J].IEEE Transactions on Image Processing,201120(12):3350-3364. |
[7] | Ye P;Doermann D.No-reference image quality assessment using visual codebook[J].IEEE Transactions on Image Processing,201221(07):3129-3138. |
[8] | Tang H;Joshi N;Kapoor A.Learning a blind measure of perceptual image quality[A].,2011:305-312. |
[9] | Saad M;Bovik A C;Charrier C.Blind image quality assessment:a natural scene statistics approach in the DCT do-main[J].IEEE Transactions on Image Processing,201221(08):3339-3352. |
[10] | Serre T;Kouh M;Cadieu C et al.A theory of object recognition:computations and circuits in the feedforward path of the ventral stream in primate visual vortex[R].Massachusetts Institute of Technology,2005. |
[11] | Serre T;Wolf L;Poggio T.Object recognition with features inspired by visual cortex[A].,2005:994-1000. |
[12] | Serre T;Oliva A;Poggio T.A feedforward architecture accounts for rapid categorization[J].Proceedings of the National Academy of Sciences,2007104(15):6424-6429. |
[13] | Serre T;Wolf L.Robust object recognition with cortex-like mechanisms[J].IEEE Transactions on Pattern Anal-ysis and Machine Intelligence,200729(03):411-426. |
[14] | Mutch J;Lowe D G.Object class recognition and localization using sparse features with limited receptive fields[J].International J ournal of Compute Vision,200880(01):45-57. |
[15] | Hubel D H;Wiesel T N.Receptive fields,Binocular interaction and functional architecture in the cat's visual cortex[J].J ournal of Physiology,1962160:106-154. |
[16] | Hubel D H;Wiesel T N.Receptive fields and functional architecture of monkey striate cortex[J].J ournal of Physiology,1968195:215-243. |
[17] | Vu C;Phan T;Chandler D M.S3:A spectral and spatial measure of local perceived sharpness in natural images[J].IEEE Transactions on Image Processing,201221(03):934-945. |
[18] | 焦李成;周伟达;张莉.智能目标识别与分类[M].北京:科学出版社,2010 |
[19] | Suykens J A K;Vandewalle J.Least squares support vector machine classifiers[J].NEURAL PROCESSING LETTERS,19999(03):293-300. |
[20] | Gestel T V;Suykens J A K;Baesens B.Benchmarking least squares support vector machine classifiers[J].Machine Learning,200454(01):5-32. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%