欢迎登录材料期刊网

材料期刊网

高级检索

研究了搭桥晶粒(BG)多晶硅薄膜晶体管(TFT)在直流电应力下的退化行为和退化机制。与普通多晶硅 TFT 相比,BG 多晶硅 TFT 展现出更好的直流应力可靠性。主要体现在 BG 多晶硅 TFT 拥有更好的直流负偏压温度不稳定性(NBTI)可靠性,更好的直流自加热(SH)可靠性,更好的直流热载流子(HC)可靠性。有源沟道区的 BG 结构是上述直流应力可靠性提高的主要原因。更好的 NBTI 的可靠性主要源于沟道内的硼氢键的形成;更好的 SH 可靠性主要源于在沟道长度方向上更快的焦耳热扩散率;更好的 HC 可靠性主要源于漏端横向电场(E x )的减弱。所有的测试结果都表明,这种高性能高可靠性的 BG 多晶硅 TFT 在片上系统中具有很大的应用前景。

Degradation behaviors and degradation mechanisms of bridged-grain (BG)polycrystalline silicon thin film transistors (TFTs)under DC bias stresses are studied and investigated.Compared to normal poly-Si TFTs,BG poly-Si TFTs exhibits better negative bias temperature instability (NBTI), better self-heating (SH)reliability and better hot carrier (HC)reliability.All these DC reliability im-provements come from BG lines inside the active channel.By selectively doping the active channel in BG poly-Si TFTs,boron-hydrogen bonds formation at oxide/channel interface and grain boundaries, Joule heat diffusion enhancement at channel length direction and lateral electric field reduction at the drain side are respectively responsible for the improved NBTI reliability,SH reliability and HC relia-bility.All test results indicate that such high performance and high reliable BG poly-Si TFTs have great potential in system-on-panel applications.

参考文献

[1] Zhang M;Wang M;Wang H.Degradation of metal-induced laterally crystallized n-type polycrystalline sili-con thin-film transistors under synchronized voltage stress[J].IEEE Transactions on Electron Devices,200956(11):2726-2732.
[2] Zhang M;Wang M;Lu X.Analysis of degradation mechanisms in low-temperature polycrystalline silicon thin-film transistors under dynamic drain stress[J].IEEE Transactions on Electron Devices,201259(06):1730-1737.
[3] Pan T M;Chan C L;Wu T W.High performance CF4 plasma-treated polysilicon TFTs using a high-k PrTiO3 gate dielectric[J].Electrochemical and Solid-State Letters,200912(08):G44-G46.
[4] Zhang M;Zhou W;Chen R.A simple method to grow thermal SiO2 interlayer for high-performance SPC po-ly-Si TFTs using Al2 O3 gate dielectric[J].IEEE Electron Device Lett,201435(05):548-550.
[5] Xu M;Wang M;Zhang D.Hydrogenation effects on the hot-carrier endurance of metal induced laterally crystallized n-type polycrystalline silicon thin film transistors[J].J pn J Appl Phys,200847(5R):3403-3407.
[6] Wang M;Meng Z;Wong M.The effects of high temperature annealing on metal-induced laterally crystallized poly-crystalline silicon[J].IEEE Transactions on Electron Devices,200047(11):2061-2067.
[7] Chen H J;Jhang J R;Huang C J.Poly-Si TFTs with three-dimensional finlike channels fabricated using nanoimprint technology[J].IEEE Electron Device Lett,201132(02):155-157.
[8] Zhou W;Meng Z;Zhao S.Bridged-grain solid-phase-crystallized polycrystalline-silicon thin-film transistors[J].IEEE Electron Device Lett,201233(10):1414-1416.
[9] Zhao S;Meng Z;Zhou W.Bridged-grain polycrystalline silicon thin-film transistors[J].IEEE Trans Elec-tron Devices,201360(06):1965-1970.
[10] Zhang M;Zhou W;Chen R.High-performance polycrystalline silicon thin-film transistors integrating sput-tered aluminum-oxide gate dielectric with bridged-grain active channel[J].Semiconductor Science and Technology,201328(11):115003.
[11] Zhou W;Zhao S Y;Chen R S.Study of the characteristics of solid phase crystallized bridged-grain poly-Si TFTs[J].IEEE Transactions on Electron Devices,201461(05):1410-1416.
[12] Chen C Y;Lee J W;Wang S D.Negative bias temperature instability in low-temperature polycrystalline sil-icon thin-film transistors[J].IEEE Transactions on Electron Devices,200653(12):2993-3000.
[13] Hu C;Wang M;Zhang B.Negative bias temperature instability dominated degradation of metal-induced lat-erally crystallized p-type polycrystalline silicon thin-film transistors[J].IEEE Transactions on Electron Devices,200956(04):587-594.
[14] Zang M;Zhou W;Chen R.Water-enhanced negative bias temperature instability in p-type low temperature polycrystalline silicon thin film transistors[J].Microelectronics Reliability,201454(01):30-32.
[15] Hashimoto S;Uraoka Y;Fuyuki T.Suppression of self-heating in low-temperature polycrystalline silicon thin-film transistors[J].J pn J Appl Phys,200746(4R):1387.
[16] Wang H;Wang M;Yang Z.Stress power dependent self-heating degradation of metal-induced laterally crystallized n-Type polycrystalline silicon thin-film transistors[J].IEEE Transactions on Electron Devices,200754(12):3276-3284.
[17] Mariucci L;Gaucci P;Valletta A.Edge effects in self-heating-related instabilities in p-channel polycrystal-line-silicon thin-film transistors[J].IEEE Electron Device Lett,201132(12):1707-1709.
[18] Xue M;Wang M;Zhu Z.Degradation behaviors of metal-induced laterally crystallized n-type polycrystalline silicon thin-film transistors under DC bias stresses[J].IEEE Transactions on Electron Devices,200754(02):225-232.
[19] Tai Y H;Huang S C;Chen P T.Generalized hot-carrier degradation and its mechanism in poly-si TFTs un-der DC/AC operations[J].IEEE Trans Device Mater Reliab,201111(01):194-200.
[20] Uraoka Y;Hatayama T;Fuyuki T.Hot carrier effects in low-temperature polysilicon thin-film transistors[J].J pn J Appl Phys,200140(4S):2833.
[21] Pankove J I;Zanzucchi P J;Magee C W.Hydrogen localization near boron in silicon[J].Applied Physics Letters,198546(04):421-423.
[22] Sas M;Annen A;Jacob W.Hydrogen bonding in plasma-deposited amorphous hydrogenated boron films[J].APPLIED PHYSICS,199782(04):1905-1908.
[23] Speight J G.Lange’s Handbook of Chemistry[M].McGraw-Hill New York,2005
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%