在扭曲向列相中,基于Landau-deGennes理论,利用二维松弛迭代方法,研究了s=±1/2扭曲向错的有序重构,给出了随着盒厚减小缺陷核的双轴结构。在临界值dc?≈9ξ(ξ是序参数变化的相干长度),有序重构结构是稳定态,而带缺陷结构是亚稳态,此时系统缺陷结构和双轴性开始沿基板方向扩散。相对于没有初始向错的情况,本征值交换为稳定解对应的盒厚较大。在临界盒厚dc≈7ξ,系统发生双轴性转变,双轴性结构扩散到整个液晶盒,形成双轴壁。在盒厚d≈9ξ时力达到极大值,而d≈7ξ时力达到极小值。对于非对称弱锚泊边界条件,随着锚泊强度的降低,弱锚泊边界将向错逐渐驱出边界。
Within the Landau-de Gennes theory,the order reconstruction of s =±1/2 twist disclina-tions in a twisted nematic cell is investigated,using the two-dimensional relaxation iterative method. The biaxial structure of the defect core as the cell gap decreasing is explored.At a critical value of d c ?≈ 9ξ (hereξ is the characteristic length for order-parameter changes),the exchange solution is sta-ble,while the defect core solution becomes metastable,where the system starts to stretch the defect structure and the biaxiality starts to propagate inside of the cell.Comparing to the case with no initial disclination,the value at which the exchange solution becomes stable increases relatively.At a critical separation of d c ≈ 7ξ,the system undergoes a biaxial transition,and the defect core merges into a bi-axial wall with large biaxiality.The force reaches a maximum at d ≈ 9ξ,and a local minimum at d ≈7ξ.For weak anchoring boundary conditions,because of the weakened frustration,the asymmetric boundary conditions repel the defect to the weak anchoring boundary as the anchoring strength coeffi-cient decreasing.
参考文献
[1] | Schopohl N;Sluckin T J.Defect core structure in nematic liquid crystals[J].Physical Review Letters,198759(22):2582-2584. |
[2] | Martinot-Lagarde P;Dreyfus-Lambez H;Dozov I.Biaxial melting of the nematic order under a strong electric field[J].Physical Review E,200367(05):051710(1-0517104). |
[3] | Barberi R;Ciuchi F;Durand G E.Electric field induced order reconstruction in a nematic cell[J].Eur Phys J E,200413(01):61-71. |
[4] | Salter P S;Carbone G;Botcherby E J.Liquid crystal director dynamics imaged using two-photon fluores-cence microscopy with remote focusing[J].Physical Review Letters,2009103(25):257803(1-2578034). |
[5] | Carbone G;Lombardo G;Barberi R.Mechanically induced biaxialtransition in a nanoconfined nematic liquid crystal with a topological defect[J].Physical Review Letters,2009103:167801(1-1678014). |
[6] | Kléman M.Points,Lines and Walls:in Liquid Crystals,Magnetic Systems and Various Disordered Media[M].New York(NY):Wiley,1983 |
[7] | Kurik M V;Lavrentovich O D.Defects in liquid crystals:homotopy theory and experimental studies[J].Sov Phys Usp,198831(196):196-224. |
[8] | Palffy-Muhoray P;Gartland E C;Kelly J R.A new configurational transition in inhomogeneous nematics[J].Liquid Crystals,199416(04):713-718. |
[9] | Rosso R;Virga E G.Metastable nematic hedgehogs[J].Journal of Physics A:Mathematical and General,199629(14):4247-4264. |
[10] | Kralj S;Virga E G;Zumer S.Biaxial torus around nematic point defects[J].Physical Review E,199960(02):1858-1866. |
[11] | Ambro?i M;Kralj S;Virga E G.Defect-enhanced nematic surface order reconstruction[J].Physical Review E,200075(03):031708(1-0317089). |
[12] | Kralj S;Rosso R;Virga E G.Finite-size effects on order reconstruction around nematic defects[J].Physical Review E,201081(02):021702(1-0217015). |
[13] | De Gennes P G;Prost J.The Physics of Liquid Crystal s[M].Oxford:Oxford University Press,1993 |
[14] | Virga E G.Variational Theories for Liquid Crystals[M].London:Chapman Hall,1994 |
[15] | Kaiser P;Wiese W;Hess S.Stability and instability of an uniaxial alignment against biaxial distortions in the iso-tropic and nematic phases of liquid crystals[J].J Non-Equilib Thermodyn,199217(02):153-169. |
[16] | Lombardo G;Ayeb H;Barberi R.Dynamical numerical model for nematic order reconstruction[J].Physical Review E,200877(05):051708(1-0517010). |
[17] | Pires D;Galerne Y.Recording of virtual disclination lines by means of surface polymerization in a nematic liquid crystal[J].Mol Cryst Liq Cryst,2005438(01):1681-1686. |
[18] | Guzmán O;Abbott N L;De Pablo J J.Quenched disorder in a liquid-crystal biosensor:adsorbed nanoparticles at confining walls[J].Journal of Chemical Physics,2005122(18):184711(1-1847110). |
[19] | Zhou X;Zhang Z D.Dynamics of order reconstruction in a nanoconfined nematic liquid crystal with a topological defect[J].Int J Mol Sci,201314(12):24135-24153. |
[20] | Qian T Z;Sheng P.Orientational states and phase transitions induced by microtextured substrates[J].Physical Review E,199755(06):7111-7120. |
[21] | 路丽霞;张志东;周璇.混合排列向列相液晶薄盒中-1/2 向错引起的有序重构的扩散[J].物理学报,201362(22):226101(1-2261017). |
[22] | Zhou X;Zhang Z D.Dynamics of order reconstruction in nanoconfined twisted nematic cells with a topological de-fect[J].Liquid Crystals,201441(09):1219-1228. |
[23] | Bisi F;Gartland E C;Rosso R.Order reconstruction in frustrated nematic twisted cells[J].Physical Review E,200368(02):021707(1-0217011). |
[24] | Yang F;Sambles J R;Bradberry G W.Half-leaky guided wave determination of azimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal[J].Journal of Applied Physics,199985(02):728-733. |
[25] | Li X T;Pei D H;Kobayashi S.Measurement of azimuthal anchoring energy at liquid crystal/photopolymer interface[J].J pn J Appl Phys,199736(L432-L434) |
[26] | Hallam B T;Yang F;Sambles J R.Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes[J].Liquid Crystals,199926(05):657-662. |
[27] | Lee G S;Cho J S;Kim J C.Direct confirmation of biaxiality in a bent-core mesogen through the measure-ment of electro-optic characteristics[J].Journal of Applied Physics,2009105(09):094509(1-0945097). |
[28] | 范志新;刘洋;杨磊.聚合物分散液晶的电场诱导定向聚合实验研究[J].液晶与显示,201227(04):434-438. |
[29] | 倪水彬;朱吉亮;钟恩伟.蓝相液晶光电特性研究[J].液晶与显示,201227(06):719-723. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%